LS6.2 Ausgleich der thermischen Expansion und Kontraktion: Unterschied zwischen den Versionen

Aus Wikidental.de
Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
 
(Eine dazwischenliegende Version desselben Benutzers wird nicht angezeigt)
Zeile 110: Zeile 110:


Zum Thema Einbettmasse gibt es auch einen [https://de.wikipedia.org/wiki/Einbettmasse großen Artikel in der Wikipedia].
Zum Thema Einbettmasse gibt es auch einen [https://de.wikipedia.org/wiki/Einbettmasse großen Artikel in der Wikipedia].
= Vorwärmen =
=== Ablauf der Erwärmung ===
Beim Gießen in der Zahntechnik muss die Gussform (Muffel) langsam und gleichmäßig vorgewärmt werden, um die festgelegte Temperatur zu erreichen, die sich nach der Einbettmasse richtet. Die Vorwärmtemperatur ist entscheidend, da eine zu hohe Temperatur den Gusshohlraum vergrößert und zu einem grobkörnigen Gefüge führen kann, während eine zu niedrige Temperatur das Gussobjekt unvollständig ausfüllen lässt.
Die Vorwärmtemperatur für Goldgusslegierungen beträgt 700 °C, für Edelmetall-Aufbrennlegierungen 850 °C und für NEM-Legierungen 950 bis 1100 °C. Der Vorwärmprozess erfolgt kontrolliert in mehreren Stufen. Bei ca. 300 °C wird Wasser abgegeben und Quarzbestandteile wandeln sich um; bei 600 °C erfolgt eine weitere Quarzumwandlung. Im Anschluss wird die Gießtemperatur gehalten, um die Muffel vollständig durchzuwärmen.
Dentaltechnische Vorwärmöfen, die drei- bis vierseitig beheizt sind, sorgen durch Strahlung und Luftzirkulation für eine gleichmäßige Erwärmung der Gussmuffeln.
==Haltetemperaturen==
[[File:Ablauf_Wärmebehandlung.png|right|400px|Ablauf Wärmebehandlung]]
Jede Wärmebehandlung besteht aus den Phasen (s. Abbildung):
# Erwärmen (Aufwärmen und Durchwärmen),
# Halten und
# Abkühlen
==== Erwärmen, Halten und Abkühlen ====
Das Erreichen der Zieltemperatur eines Werkstücks kann auf zwei Arten erfolgen: einerseits durch Wärmeübertragung, bei der die Wärme durch Wärmeübertragung (durch Konvektion (Muffelofen/Backofen/Heizung) oder Strahlung (Infrarotheizung),  auf das Werkstück übergeht (normaler Ofen), und andererseits durch im Werkstück selbst erzeugte Wärme mittels Induktionserwärmung (Mehr dazu beim Gießen).
Bei der Wärmeübertragung erfolgt die Erwärmung des inneren Teils des Werkstücks durch Wärmeleitung, was bedeutet, dass der Kern (die Mitte des Werkstücks) später die Zieltemperatur erreicht als der Rand (die Oberfläche). Dies wird als Durchwärmen bzw. Durchwärmzeit bezeichnet (s. Abbildung oben). Eine viel schnellere Erwärmung ist machbar, wenn die Wärme innerhalb des Werkstücks generiert wird, dies geschieht durch Induktionserwärmung (Mehr dazu beim Gießen).
Mit steigender Erwärmungsgeschwindigkeit, größerer Abmessung des Werkstücks und geringerer thermischer Leitfähigkeit des Materials nimmt der Temperaturunterschied zwischen dem Kern und dem Rand des Werkstücks zu. Obwohl aus ökonomischen Gründen (Zeit, Geld) eine schnelle Erwärmung des Werkstücks angestrebt wird, führt dies zu erhöhten Risiken von Verzug und Rissen aufgrund der beträchtlichen Temperaturdifferenzen zwischen Rand und Kern.

Aktuelle Version vom 25. Oktober 2024, 13:34 Uhr

Wärmeausdehnungskoeffizient

Der Wärmeausdehnungskoeffizient (WAK) ist ein Materialwert, der angibt, wie stark sich ein Werkstoff bei Temperaturänderung ausdehnt (auseinandergezogen wird) oder staucht (zusammengedrückt wird). Der WAK-Wert wird normalerweise in 10-6 · K-1 angegeben.

Kelvin und Grad Celsius

Die Einheit Kelvin (K) ist wie Grad Celsius eine Temperatureinheit (siehe Abbildung rechts). Grad Celsius hat seinen Nullpunkt bei dem Gefrierpunkt von Wasser (bei 0°C gefriert Wasser). Kelvin hat seinen Nullpunkt bei dem Punkt, an dem es keine thermische Bewegung mehr gibt. 0 K sind -237,15 °C. Ansonsten bleibt alles gleich. Eine Temperaturänderung von 1 K ist genauso groß wie eine Temperaturänderung von 1°C.

Ein Beispiel: Ein 1 Meter lange Kupferstange mit einem Wärmeausdehnungskoeffizienten von 16,4 · 10-6 1/K wird sich bei einer Temperaturerhöhung um 1 Kelvin auf 1,0000164 Meter dehnen (1m+1m*16,4 · 10-61/K · 1K).

Kontraktion einer Legierung unterhalb des Soliduspunktes

Wir wissen bereits, dass Legierungen sich bei Wärme ausdehnen. Man sagt dazu auch Wärmeausdehnung oder thermische Expansion. Wenn sich die Legierungen wieder abkühlen, ziehen sie sich zusammen. Man sagt dazu auch Wärmeschrumpfung oder thermische Kontraktion.

Diese thermische Expansion und Kontraktion gilt für alle Stoffe. Jedoch expandieren und kontrahieren unterschiedliche Werkstoffe unterschiedlich stark. Beim Gießen erhitzen wir die Muffel, den feuerfesten Vlies, die Einbettmasse und die Legierung, 4 Werkstoffe mit vier unterschiedlichen Wärmeausdehnungen und Wärmeschrumpfungen.

Erstarrung- und Thermische Kontraktion

Wenn Legierungen vollständig fest(also unterhalb der Solidustemperatur bis zur Raumtemperatur) weiter abkühlen erfolgt die thermische Kontraktion (auch Wärmeschrumpfung). Dabei verringert sich das Volumen um ca. 1,6 % bei Goldguss- und 2,2% bei Modellgusslegierungen (s. Abbildung rechts). Da die Legierung beim Gießen zunächst größer ist als die Legierung später auf Raumtemperatur sein soll, muss die Gussform diese Expansion/Ausdehnung ausgleichen. Die Gussform aus Einbettmasse muss also etwas während der Verarbeitung bzw. Verwendung expandieren, um die thermische Kontraktion der Legierung auszugleichen.

Die benötigte Expansion der Einbettmasse erfolgt in 2 Schritten, die Abbindeexpansion und die thermische Expansion.

Abbindeexpansion der Einbettmasse

Abbindeexpansion ist die Expansion (Ausdehnung) durch das Abbinden (Aushärten/Erstarren) der Einbettmasse. Einbettmasse expandiert während des Abbindevorgangs. Die Abbindeexpansion unterscheidet sich je nach verwendetem Bindemittel. Bindemittel binden Stoffe zusammen, sie verbinden sie.

  • Bindemittel
    • Gips (nur bei Vollguss)
    • Phosphat

! Bitte lese hier auch folgende Links:

Die Expansion hängt neben der Auswahl des Bindemittels von folgenden Faktoren ab:

  1. Verhältnis von Wasser zu Anmischflüssigkeit (nur bei phosphatgebundenen Einbettmassen)
  2. Dicke des Muffelvlieses (Die Einbettmasse soll in alle Richtungen expandieren. Wenn Sie bei zu dünnen Vlies nicht in Richtung Vließ/Muffelring expandieren kann, muss sie in Längsrichtung expandieren)
  3. Einhalten der vorgegebenen Abbindezeiten
  4. Verwendung eines Drucktopfes (?)

Die Anmischflüssigkeit bei phosphatgebundenen Einbettmassen ist eine Lösung von Kieselsol, also ein kollodiales (gelartiges) Siliziumhydroxid. Es geliert und kristallisiert an den Kristallen der feuerfesten Bestandteile Quarz und Cristobalit in der Einbettmassemischung. Es sorgt so für eine etwas höhere Expansion.

Die thermische Expansion der Einbettmasse

Temperatur_Dehnungsdiagramm Gips, Quarz, Christobalit und Tridymit

Die Versuche zur Abbindeexpansion von Einbettmasse haben gezeigt, dass diese Expansion nicht ausreicht, um die thermische Kontraktion des Gussobjektes zwischen Soliduspunkt und Raumtemperatur auszugleichen. Es muss also noch eine weitere Expansion der Einbettmasse stattfinden!

Es handelt sich dabei um die so genannte thermische Expansion!

Sie ist zurückzuführen auf die Zusammensetzung der Einbettmasse:

  • Feuerfeste Bestandteile
    • Quarz
    • Cristobalit
    • Tridymit
Umwandlungsvorgänge der feuerfesten Bestandteile
Bestandteil Umwandlungsvorgang Temperaturbereich Volumenänderung
Tridymit β-Tridymit zu β-Christobalit 1470 °C + 4,7 %
Quarz β-Quarz zu β-Christobalit 1000 - 1450 °C + 11,7 %
Quarz β-Quarz zu β-Tridymit 870 °C + 12,7 %
Quarz α-Quarz zu β-Quarz 575 °C + 2,4 %
Cristobalit α-Cristobalit zu β-Cristobalit 270 °C + 5,6 %
Tridymit α-Tridymit zu β-Tridymit 117 °C + 0,6 %


Die feuerfesten Bestandteile der Einbettmasse sorgen für eine Expansion der Einbettmasse bei Erwärmung. Tridymit und Cristobalit sind (Hochtemperatur-)Modifikationen von Quarz (SiO2). Sie ändern/wandeln, je nach Temperatur, ihren kristallinen Aufbau und damit auch ihr Volumen. Diese Umwandlung geschieht bei bestimmten Temperaturen recht zügig! Tridymit wird, im Gegensatz zu Critobalit und Quarz, nur in kleinen Mengen verwendet.

Die thermische Umwandlung von Quarz und seinen Modifikationen hängt mit der Anordung der Atome zusammen. Die Umwandlung von α-Quarz in β-Quarz (Tiefquarz in Hochquarz), ist mit einer Änderung des Bindungswinkels der SiO2-Moleküle von 144° auf 147° verbunden.

Arbeitsauftrag

Die thermische Umwandlung (und damit Expansion) der verschiedenen Quarz-Modifikationen findet bei den in der Grafik dargestellten Temperaturen statt. Bei welchen, zahntechnisch gesehen, relevanten Temperaturen, finden Umwandlungsprozesse der Quarz-Modifikationen Quarz, Tridymit und Cristobalit statt und wie hoch ist die jeweilige Expansion in diesem Temperaturbereich? Was bedeutet das für das Vorwärmen der Einbettmasseformen?

Lies dir nun die Verarbeitungsanleitungen für die Einbettmassen durch und vergleiche die Haltetemperaturen mit den Umwandlungsvorgängen.

Verarbeitungsanleitung phosphatgebundene Einbettmasse: findest du hier

Verarbeitungsanleitung Gipsgeundene Einbettmasse: hier

Ergänzende Informationen für Interessierte

Zum Thema Einbettmasse gibt es auch einen großen Artikel in der Wikipedia.

Vorwärmen

Ablauf der Erwärmung

Beim Gießen in der Zahntechnik muss die Gussform (Muffel) langsam und gleichmäßig vorgewärmt werden, um die festgelegte Temperatur zu erreichen, die sich nach der Einbettmasse richtet. Die Vorwärmtemperatur ist entscheidend, da eine zu hohe Temperatur den Gusshohlraum vergrößert und zu einem grobkörnigen Gefüge führen kann, während eine zu niedrige Temperatur das Gussobjekt unvollständig ausfüllen lässt.

Die Vorwärmtemperatur für Goldgusslegierungen beträgt 700 °C, für Edelmetall-Aufbrennlegierungen 850 °C und für NEM-Legierungen 950 bis 1100 °C. Der Vorwärmprozess erfolgt kontrolliert in mehreren Stufen. Bei ca. 300 °C wird Wasser abgegeben und Quarzbestandteile wandeln sich um; bei 600 °C erfolgt eine weitere Quarzumwandlung. Im Anschluss wird die Gießtemperatur gehalten, um die Muffel vollständig durchzuwärmen.

Dentaltechnische Vorwärmöfen, die drei- bis vierseitig beheizt sind, sorgen durch Strahlung und Luftzirkulation für eine gleichmäßige Erwärmung der Gussmuffeln.

Haltetemperaturen

Ablauf Wärmebehandlung

Jede Wärmebehandlung besteht aus den Phasen (s. Abbildung):

  1. Erwärmen (Aufwärmen und Durchwärmen),
  2. Halten und
  3. Abkühlen





Erwärmen, Halten und Abkühlen

Das Erreichen der Zieltemperatur eines Werkstücks kann auf zwei Arten erfolgen: einerseits durch Wärmeübertragung, bei der die Wärme durch Wärmeübertragung (durch Konvektion (Muffelofen/Backofen/Heizung) oder Strahlung (Infrarotheizung), auf das Werkstück übergeht (normaler Ofen), und andererseits durch im Werkstück selbst erzeugte Wärme mittels Induktionserwärmung (Mehr dazu beim Gießen).

Bei der Wärmeübertragung erfolgt die Erwärmung des inneren Teils des Werkstücks durch Wärmeleitung, was bedeutet, dass der Kern (die Mitte des Werkstücks) später die Zieltemperatur erreicht als der Rand (die Oberfläche). Dies wird als Durchwärmen bzw. Durchwärmzeit bezeichnet (s. Abbildung oben). Eine viel schnellere Erwärmung ist machbar, wenn die Wärme innerhalb des Werkstücks generiert wird, dies geschieht durch Induktionserwärmung (Mehr dazu beim Gießen).

Mit steigender Erwärmungsgeschwindigkeit, größerer Abmessung des Werkstücks und geringerer thermischer Leitfähigkeit des Materials nimmt der Temperaturunterschied zwischen dem Kern und dem Rand des Werkstücks zu. Obwohl aus ökonomischen Gründen (Zeit, Geld) eine schnelle Erwärmung des Werkstücks angestrebt wird, führt dies zu erhöhten Risiken von Verzug und Rissen aufgrund der beträchtlichen Temperaturdifferenzen zwischen Rand und Kern.