WAK vereinfacht: Unterschied zwischen den Versionen

Aus Wikidental.de
Keine Bearbeitungszusammenfassung
 
(23 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 1: Zeile 1:
[[WAK | Link zur übergeordneten Seite]]
[[1998_LS_8.1_WAK | Link zur übergeordneten Seite]]


=Wärmeausdehnungskoeffizient=
=Wärmeausdehnungskoeffizient=
[[File:Kelvin_Grad_Celsius.png|thumb|right|100px| Kelvin und Grad Celsius]]
Der '''W'''ärme'''a'''usdehnungs'''k'''oeffizent (WAK) ist ein Materialwert, der angibt, wie stark sich ein Material bei einer Temperaturänderung ausdehnt (Fachbegriff: expandiert) oder zusammenzieht (Fachbegriff: kontrahiert).
<!--Der WAK wird üblicherweise in der Einheit 1/K (eins durch Kelvin) angegeben. Kelvin ist eine Maßeinheit für die Temperatur und wird in der Wissenschaft und Technik verwendet und gibt an, wie stark sich Atome in einem Stoff bewegen. In Bezug auf Grad Celcius (°C) sind 0 Kelvin das gleiche wie -273,15 Grad Celsius. 273,15 Kelvin sind 0 Grad Celsius und 373,15 Kelvin somit 100 Grad Celsius.-->


== Linearer Wärmeausdehnungskoeffizient α ==
[[File:Längenausdehnungskoeffizient.png|thumb|right|200px| Längenausdehnungskoeffizient ''&alpha; ''bzw. linearer Wärmeausdehnungskoeffizient ''&alpha;'']]


Festkörper expandieren bei Erwärmung, da die Atome sich mehr bewegen und daher mehr Platz nutzen. Die Ausdehnung für feste Stoffe (keine Flüssigkeiten oder Gase) wird meist als linearer Wärmeausdehnungskoeffizient ''&alpha;'' oder als Längenausdehnungskoeffizienten α angegeben. Der lineare WAK wird normalerweise in den Einheiten  &mu;m/· K (Mikrometer durch Meter mal Kelvin) angegeben.
Der '''W'''ärme'''a'''usdehnungs'''k'''oeffizient (WAK) ist ein Materialwert, der angibt, wie stark sich ein Werkstoff bei Temperaturänderung ausdehnt (auseinandergezogen wird) oder staucht (zusammengedrückt wird). Der WAK-Wert wird normalerweise in 10<sup>-6</sup> · K<sup>-1</sup> angegeben.


<!--
Beim Erwärmen dehnen sich Werkstoffe aus. Die Werkstoffe werden gedehnt (auseinandergezogen).


-->
Beim Abkühlen stauchen sich Werkstoffe. Die Werkstoffe werden gestaucht (zusammengedrückt).


== Bedeutung des WAK in der Zahntechnik ==
[[File:Kelvin_Grad_Celsius.png|thumb|right|100px| Kelvin und Grad Celsius]]Die '''Einheit Kelvin (K)''' ist wie Grad Celsius eine Temperatureinheit (siehe Abbildung rechts). Eine Temperaturänderung von 1 Kelvin ist dasselbe wie eine Temperaturänderung von 1 °C.


Der WAK von Dentallegierungen ist in Legierungstabellen von großer Bedeutung. Deutlich wird dies bei einem Keramikbrand auf eine Aufbrennlegierung. Dabei können 3 Fälle auftreten:
'''Ein Beispiel''': Ein 1 Meter lange Kupferstange mit einem Wärmeausdehnungskoeffizienten von 16,4 · 10<sup>-6</sup> 1/K wird sich bei einer Temperaturerhöhung um 1 Kelvin auf 1,0000164 Meter dehnen.  
<br><br><br><br>


1. Der WAK der Legierung ist gleich dem WAK der Keramik. WAK_Legierung = WAK_Keramik.
== Bedeutung des WAK in der Zahntechnik ==
[[File:Aufbrennlegierung_Keramik_Verbindungsbereich.png|thumb|right|200px|Die Aufbrennlegierung und Keramik sind im Verbindungsbereich miteinander verbunden]]
Bei einer Verblendkeramik wird die Keramik auf eine Aufbrennlegierung gebrannt. Nach dem Brand kühlen sich die Keramik und die Aufbrennlegierung gemeinsam ab. Die Keramik ist im Verbindungsbereich zwischen Keramik und Aufbrennlegierung fest mit der Aufbrennlegierung verbunden. Im Verbindungsbereich sind bei dem Abkühlvorgang beide Werkstoffe gezwungen sich gleich zu stauchen, auch wenn beide Werkstoffe unterschiedliche WAK-Werte haben und sich somit normalerweise anders stauchen würden.


2. Der WAK der Legierung ist größer als der WAK der Keramik. WAK_Legierung > WAK_Keramik.
'''Im Verbindungsbereich sind Aufbrennlegierung und Keramik fest miteinander verbunden'''.


3. Der WAK der Legierung ist kleiner als der WAK der Keramik. WAK_Legierung < WAK_Keramik.
'''Im Verbindungsbereich''' werden beim Abkühlvorgang die Aufbrennlegierung und Keramik gezwungen sich '''gleich zu stauchen''', auch wenn Sie unterschiedliche WAK-Werte haben.


=== 1. Der WAK der Legierung ist gleich dem WAK der Keramik. ===
'''Im äußeren Bereich''' werden sich beim Abkühlvorgang die Aufbrennlegierung und Keramik '''normal stauchen'''.
[[File:Wak.gif|thumb|100px|right|WAK_Legierung = WAK_Keramik]]Beide Stoffe dehnen (expandieren) sich bei Erwärmung gleich stark. Leider ist dies <u>technisch meist nicht möglich</u>, da es immer zu kleinen Abweichungen bei der Produktion kommen kann. Da Fall 1 nie vorkommt, schauen wir uns Fall 2 und Fall 3 an.
<br><br><br>


=== 2. Der WAK der Legierung ist größer als der WAK der Keramik. ===
Im Aufwärmvorgang expandiert (dehnt sich aus) die Legierung stärker als die Keramik. Im Abkühlungsvorgang kontrahiert (zieht sich zusammen) die Legierung demnach auch stärker als die Keramik. Da die Keramik an der Legierung haftet, wird die Keramik gezwungen etwas kleiner zu werden als sie normalerweise würde. <u>Im äußeren Bereich kann die Keramik normal kontrahieren (zusammenziehen)</u>. <u>Im Bereich zwischen Keramik und Metall wird die Keramik jedoch zusammen gedrückt und es entstehen Druckspannungen.</u> <u>Druckspannungen können von spröden Werkstoffen wie Keramiken gut aufgenommen werden</u>.
<gallery>
Wak_gut.gif|WAK_Legierung > WAK_Keramik
WAK_gut_2.png|WAK_Legierung > WAK_Keramik, obere Kante der Keramik normale Kontraktion, untere Kante der Keramik gezwungene Kontraktion
</gallery>
<br>


=== 3. Der WAK der Legierung ist kleiner als der WAK der Keramik. ===
Im Aufwärmvorgang expandiert (dehnt sich aus) die Keramik stärker als die Legierung. Im Abkühlungsvorgang kontrahiert (zieht sich zusammen) die Keramik auch stärker als die Legierung. Da die Keramik an der Legierung haftet, wird die Keramik gezwungen etwas größer zu werden als sie normalerweise würde. <u>Im äußeren Bereich kann die Keramik normal kontrahieren (zusammenziehen)</u>. <u>Im Bereich zwischen Keramik und Metall wird die Keramik jedoch auseinander gezogen und es entstehen Zugspannungen</u>. Die Zugspannungen (wird auseinander gezogen) erhöhen bei spröden Werkstoffen wie Keramiken die Rissbildung stark. <u>Spröde Werkstoffe wie Keramik können Zugspannungen nicht gut aufnehmen</u>.
<gallery>
Wak_schlecht.gif|WAK_Legierung < WAK_Keramik
WAK_schlecht_2.png|WAK_Legierung < WAK_Keramik, obere Kante der Keramik normale Kontraktion, untere Kante der Keramik gezwungene Kontraktion
</gallery>
<br>


=== Optimaler Legierungs-WAK und der Grund für Risse und Abplatzungen in der Verblendung ===
Deutlich wird dies in den folgenden 3 Fällen:
<u>Die Legierung und die Keramik müssen demnach aufeinander abgestimmt sein. Optimal ist für die Legierung ein um 0,5 bis 1 µm/m*K größeren linearer WAK-Wert (WAK_Legierung > WAK_Keramik).</u> So wird die Legierung bei der Abkühlung stärker kontrahieren (zusammenziehen) und die Keramik (die an der Legierung haftet) wird leicht zusammengedrückt (siehe Fall 2: WAK_Legierung > WAK_Keramik).


Ist der WAK der Legierung viel größer als der WAK der Keramik führt dies zu Abplatzungen, da die Keramik gezwungen wird, stark zu schrumpfen und somit die Druckspannung (Keramik wird zusammengedrückt) sehr hoch wird. Ist der WAK der Legierung viel kleiner als der WAK der Keramik, führt dies zu Rissen, da die Keramik gezwungen wird, sich stark auszudehnen und somit die Zugspannung (Keramik wird auseinander gezogen) sehr hoch wird.
'''1. WAK_Legierung = WAK_Keramik'''. (Der WAK der Legierung ist gleich dem WAK der Keramik.)


<gallery>
'''2. WAK_Legierung < WAK_Keramik'''. (Der WAK der Legierung ist kleiner als der WAK der Keramik.)
WAK_Keramik_Risse.png|WAK_Legierung viel kleiner als WAK_Keramik
WAK_Keramik_Abplatzung.png|WAK_Legierung viel größer als WAK_Keramik
</gallery>


'''3. WAK_Legierung > WAK_Keramik'''. (Der WAK der Legierung ist größer als der WAK der Keramik.)






Zusatzinfos:
=== 1. WAK_Legierung = WAK_Keramik. Der WAK der Legierung ist gleich dem WAK der Keramik. ===
<div class="mw-collapsible mw-collapsed">
'''Temperatur in Kelvin und die thermische Bewegung der Atome'''
[[File:Kelvin_Grad_Celsius.png|thumb|right|100px| Kelvin und Grad Celsius]]
Kelvin ist eine Maßeinheit für die Temperatur und wird in der Wissenschaft und Technik verwendet. Der Kelvin-Nullpunkt (also 0 Kelvin bzw. 0 K (Achtung! Kein Grad)) ist definiert als der Punkt, an dem alle thermischen Bewegungen (Wärmebewegung) von Atome aufhören würden. Mehr thermische Bewegung führt demnach zu mehr Bewegung der Atome. Die Atome brauchen dann mehr Platz und daher expandiert der Stoff. Weniger thermische Bewegung führt demnach zur kontraktion.
In Bezug auf Grad Celcius (°C) wären 0 K das gleiche wie -273,15 Grad Celsius. 273,15 Kelvin sind also 0 Grad Celsius und 373,15 Kelvin somit 100 Grad Celsius.
[[File:Thermische_Expansion.gif|thumb|right|100px| Thermische Expansion und Kontraktion - zum Animieren anklicken]]


[[File:Aufbrennlegierung_gleich_Keramik_WAK.png|thumb|right|200px| WAK_Legierung = WAK_Keramik]]Im Abkühlvorgang stauchen sich die Legierung und die Keramik gleich stark.


Die Formel zum Umrechnen sieht so aus:
Leider gibt es dies in der Praxis nie, da man nie absolut gleiche WAK-Werte bei zwei Stoffen erreichen kann. Daher werden in Legierungstabellen meist mittlere WAK-Werte angegeben oder Bereiche (von ... bis ...), da man immer Unterschiede hat.
Temperatur in Kelvin = Temperatur in Grad Celsius + 273,15.


<br><br><br><br><br><br><br><br><br>
Der WAK der Legierung und der Keramik sind praktisch nie gleich. Daher gibt es diese Situation in der Praxis nie.


'''Ergänzung zum linearen Wärmeausdehnungskoeffizienten'''
<br><br><br><br><br><br><br>


Ein Beispiel: Der Längenausdehnungskoeffizienten ''&alpha;'' von Kupfer ist:
=== 2. WAK_Legierung < WAK_Keramik. Der WAK der Legierung ist kleiner als der WAK der Keramik. ===
[[File:WAK_schlecht_2.png|thumb|right|200px|WAK_Legierung < WAK_Keramik]]
Im Abkühlvorgang staucht sich die Keramik normalerweise mehr als die Aufbrennlegierung.
Im '''äußeren Bereich''' kann sich die Keramik und die Aufbrennlegierung im Abkühlvorgang normal stauchen (siehe Abbildung).


  16,4 · 10<sup>-6</sup>/K,
  Im '''Verbindungsbereich''' kann die Keramik sich nicht so stark stauchen, wie sie normalerweise würde (siehe Abbildung). Im Verbindungsbereich '''wird die Keramik von der Legierung auseinandergezogen''', die Keramik dehnt sich also im Verbindungsbereich stärker. Dies führt zu Zugspannungen. '''Geringe Zugspannungen führen bereits zu Rissen in der Keramik.'''
<br><br><br><br><br><br>
=== 3. WAK_Legierung > WAK_Keramik. Der WAK der Legierung ist größer als der WAK der Keramik. ===
[[Datei:WAK gut 2.png|thumb|right|200px|WAK_Legierung > WAK_Keramik]]
Im Abkühlungsvorgang staucht sich die Keramik normalerweise weniger als die Legierung.
Im '''äußeren Bereich''' kann sich die Keramik und die Aufbrennlegierung im Abkühlvorgang normal stauchen (siehe Abbildung).


so wird sich z.B. eine 1 Meter lange Kupferstange mit einem linearen Wärmeausdehnungskoeffizienten von 16,4 · 10<sup>-6</sup> 1/K bei einer Temperaturerhöhung um 1 Kelvin auf 1,0000164 Meter dehnen (1m+1m*16,4 · 10<sup>-6</sup>1/K · 1K). Bei vielen Feststoffen (z.B. Dentallegierung) expandieren und kontrahieren die Stoffe in alle Raumrichtungen mit dem Längenausdehnungskoeffizienten α.
Im '''Verbindungsbereich''' kann die Keramik sich nicht so stark stauchen, wie sie normalerweise würde (siehe Abbildung). Im Verbindungsbereich '''wird die Keramik von der Legierung zusammengedrückt''', die Keramik staucht sich also im Verbindungsbereich stärker. Keramiken können großen Druckspannungen widerstehen. '''Der WAK der Keramik darf bis zu 1·10<sup>-6</sup> 1/K kleiner sein.'''
<br><br><br><br>


Die Änderung der Länge (Längenausdehnung) ∆L ist gleich dem linearern Wärmeausdehnungskoeffizient α mal die Ursprungslänge (L_0) mal die Änderung der Temperatur (∆T).  
=== Optimaler Legierungs-WAK und der Grund für Risse und Abplatzungen in der Verblendung ===
Als Formel:
Die Legierung und die Keramik müssen aufeinander abgestimmt sein. Optimal ist für die Legierung ein um 0,5 bis 1 ·10<sup>-6</sup> 1/K größeren WAK-Wert. So staucht sich die Legierung bei der Abkühlung stärker und die Keramik (die an der Legierung haftet) wird leicht zusammengedrückt (siehe Fall 3: WAK_Legierung > WAK_Keramik).


<math>\Delta L = \alpha \sdot L_0 \sdot \Delta T</math>
Ist der WAK der Legierung viel größer als der WAK der Keramik führt dies zu Abplatzungen, da die Keramik gezwungen wird, stark zu schrumpfen und somit die Druckspannung (Keramik wird zusammengedrückt) zu hoch wird. Ist der WAK der Legierung viel kleiner als der WAK der Keramik, führt dies zu Rissen, da die Keramik gezwungen wird, sich stark auszudehnen und somit die Zugspannung (Keramik wird auseinander gezogen) zu hoch wird.


Deshalb kann man den linearer Wärmeausdehnungskoeffizient ''&alpha;'' von Kupfer auch mit 16,4 &mu;m/m  · K angeben.
<gallery>
 
WAK_Keramik_Risse.png|WAK_Legierung viel kleiner als WAK_Keramik
 
WAK_Keramik_Abplatzung.png|WAK_Legierung viel größer als WAK_Keramik
</div>
</gallery>
 
 
 
 
<!--
Hersteller von Keramikmassen müssen also auch den WAK ihrer Werkstoffe angeben, damit Zahntechniker die richtige Legierung zur Keramik auswählen können. So schreibt die Firma VITA z.B. auf ihrer Hompage:"... VITA VM 13 wurde als spezielle Verblendkeramik mit Feinstruktur für alle gängigen Legierungen im WAK-Bereich 13,8 - 15,2 entwickelt ..." . Im Datenblatt der Keramik wird der WAK der Keramik mit 13,1 - 13,6 angegeben.
 
Zusatzinfos:
Beim Erwärmen zweier fest aneinander haftender Metalle bewirkt das Metall mit dem größeren Längenausdehnungskoeffizient (Al, Zn) eine Krümmung des Metallstreifens hin zum Metall mit dem kleineren Längenausdehnungskoeffizient (Fe).
Fe  11,8, Al    23,1 , Zn  30,2
 
Negativbeispiel mit vielen Fehlern: https://www.wegold.de/glossar/40-glossar-fachbegriffe/glossar-zahntechnik/280-wak
 
Die Aufbrennlegierung und die Keramikmasse dehnen sich eventuell unterschiedlich aus und ziehen sich unterschiedlich zusammen. Die Keramik ist jedoch an der Legierungsoberfläche befestigt und wird so von der Legierung gezwungen sich stärker auszudehnen/zusammenzuziehen als sie normalerweise würde.
 
ChatGPT vom 04.03.2023:
Der WAK (Wärmeausdehnungskoeffizient) ist in der Zahntechnik wichtig, da er die thermischen Eigenschaften von Materialien beschreibt, die in der Zahntechnik verwendet werden. Der WAK gibt an, wie viel sich ein Material bei einer bestimmten Temperaturänderung ausdehnt oder zusammenzieht.
 
In der Zahntechnik werden WAK-Werte verwendet, um sicherzustellen, dass Zahnersatzmaterialien wie Kronen, Brücken und Prothesen eine ähnliche thermische Ausdehnung wie die natürlichen Zähne aufweisen. Wenn die thermischen Ausdehnungskoeffizienten von Zahnersatzmaterialien und natürlichen Zähnen nicht übereinstimmen, kann dies zu Problemen wie Leckagen, Rissen oder Verformungen führen.
 
Daher ist es wichtig, dass Zahntechniker und Zahnärzte den WAK von Zahnersatzmaterialien berücksichtigen, um sicherzustellen, dass sie den natürlichen Zähnen des Patienten so nahe wie möglich kommen und eine gute Passform und Funktionalität gewährleisten. Die Verwendung von Materialien mit ähnlichen WAK-Werten kann dazu beitragen, Probleme mit Zahnersatz zu minimieren und das Risiko von Beschwerden und Infektionen zu reduzieren.
 
-->

Aktuelle Version vom 29. Oktober 2023, 12:14 Uhr

Link zur übergeordneten Seite

Wärmeausdehnungskoeffizient

Der Wärmeausdehnungskoeffizient (WAK) ist ein Materialwert, der angibt, wie stark sich ein Werkstoff bei Temperaturänderung ausdehnt (auseinandergezogen wird) oder staucht (zusammengedrückt wird). Der WAK-Wert wird normalerweise in 10-6 · K-1 angegeben.

Beim Erwärmen dehnen sich Werkstoffe aus. Die Werkstoffe werden gedehnt (auseinandergezogen).
Beim Abkühlen stauchen sich Werkstoffe. Die Werkstoffe werden gestaucht (zusammengedrückt).
Kelvin und Grad Celsius

Die Einheit Kelvin (K) ist wie Grad Celsius eine Temperatureinheit (siehe Abbildung rechts). Eine Temperaturänderung von 1 Kelvin ist dasselbe wie eine Temperaturänderung von 1 °C.

Ein Beispiel: Ein 1 Meter lange Kupferstange mit einem Wärmeausdehnungskoeffizienten von 16,4 · 10-6 1/K wird sich bei einer Temperaturerhöhung um 1 Kelvin auf 1,0000164 Meter dehnen.



Bedeutung des WAK in der Zahntechnik

Die Aufbrennlegierung und Keramik sind im Verbindungsbereich miteinander verbunden

Bei einer Verblendkeramik wird die Keramik auf eine Aufbrennlegierung gebrannt. Nach dem Brand kühlen sich die Keramik und die Aufbrennlegierung gemeinsam ab. Die Keramik ist im Verbindungsbereich zwischen Keramik und Aufbrennlegierung fest mit der Aufbrennlegierung verbunden. Im Verbindungsbereich sind bei dem Abkühlvorgang beide Werkstoffe gezwungen sich gleich zu stauchen, auch wenn beide Werkstoffe unterschiedliche WAK-Werte haben und sich somit normalerweise anders stauchen würden.

Im Verbindungsbereich sind Aufbrennlegierung und Keramik fest miteinander verbunden.
Im Verbindungsbereich werden beim Abkühlvorgang die Aufbrennlegierung und Keramik gezwungen sich gleich zu stauchen, auch wenn Sie unterschiedliche WAK-Werte haben.
Im äußeren Bereich werden sich beim Abkühlvorgang die Aufbrennlegierung und Keramik normal stauchen.


Deutlich wird dies in den folgenden 3 Fällen:

1. WAK_Legierung = WAK_Keramik. (Der WAK der Legierung ist gleich dem WAK der Keramik.)

2. WAK_Legierung < WAK_Keramik. (Der WAK der Legierung ist kleiner als der WAK der Keramik.)

3. WAK_Legierung > WAK_Keramik. (Der WAK der Legierung ist größer als der WAK der Keramik.)


1. WAK_Legierung = WAK_Keramik. Der WAK der Legierung ist gleich dem WAK der Keramik.

WAK_Legierung = WAK_Keramik

Im Abkühlvorgang stauchen sich die Legierung und die Keramik gleich stark.

Leider gibt es dies in der Praxis nie, da man nie absolut gleiche WAK-Werte bei zwei Stoffen erreichen kann. Daher werden in Legierungstabellen meist mittlere WAK-Werte angegeben oder Bereiche (von ... bis ...), da man immer Unterschiede hat.

Der WAK der Legierung und der Keramik sind praktisch nie gleich. Daher gibt es diese Situation in der Praxis nie.








2. WAK_Legierung < WAK_Keramik. Der WAK der Legierung ist kleiner als der WAK der Keramik.

WAK_Legierung < WAK_Keramik

Im Abkühlvorgang staucht sich die Keramik normalerweise mehr als die Aufbrennlegierung.

Im äußeren Bereich kann sich die Keramik und die Aufbrennlegierung im Abkühlvorgang normal stauchen (siehe Abbildung).
Im Verbindungsbereich kann die Keramik sich nicht so stark stauchen, wie sie normalerweise würde (siehe Abbildung). Im Verbindungsbereich wird die Keramik von der Legierung auseinandergezogen, die Keramik dehnt sich also im Verbindungsbereich stärker. Dies führt zu Zugspannungen. Geringe Zugspannungen führen bereits zu Rissen in der Keramik.







3. WAK_Legierung > WAK_Keramik. Der WAK der Legierung ist größer als der WAK der Keramik.

WAK_Legierung > WAK_Keramik

Im Abkühlungsvorgang staucht sich die Keramik normalerweise weniger als die Legierung.

Im äußeren Bereich kann sich die Keramik und die Aufbrennlegierung im Abkühlvorgang normal stauchen (siehe Abbildung).
Im Verbindungsbereich kann die Keramik sich nicht so stark stauchen, wie sie normalerweise würde (siehe Abbildung). Im Verbindungsbereich wird die Keramik von der Legierung zusammengedrückt, die Keramik staucht sich also im Verbindungsbereich stärker. Keramiken können großen Druckspannungen widerstehen. Der WAK der Keramik darf bis zu 1·10-6 1/K kleiner sein.





Optimaler Legierungs-WAK und der Grund für Risse und Abplatzungen in der Verblendung

Die Legierung und die Keramik müssen aufeinander abgestimmt sein. Optimal ist für die Legierung ein um 0,5 bis 1 ·10-6 1/K größeren WAK-Wert. So staucht sich die Legierung bei der Abkühlung stärker und die Keramik (die an der Legierung haftet) wird leicht zusammengedrückt (siehe Fall 3: WAK_Legierung > WAK_Keramik).

Ist der WAK der Legierung viel größer als der WAK der Keramik führt dies zu Abplatzungen, da die Keramik gezwungen wird, stark zu schrumpfen und somit die Druckspannung (Keramik wird zusammengedrückt) zu hoch wird. Ist der WAK der Legierung viel kleiner als der WAK der Keramik, führt dies zu Rissen, da die Keramik gezwungen wird, sich stark auszudehnen und somit die Zugspannung (Keramik wird auseinander gezogen) zu hoch wird.