WAK vereinfacht: Unterschied zwischen den Versionen

Aus Wikidental.de
Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
 
(22 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 1: Zeile 1:
[[WAK | Link zur übergeordneten Seite]]
[[1998_LS_8.1_WAK | Link zur übergeordneten Seite]]


=Wärmeausdehnungskoeffizient=
=Wärmeausdehnungskoeffizient=
[[File:Kelvin_Grad_Celsius.png|thumb|right|100px| Kelvin und Grad Celsius]]
Der <u>'''W'''ärme'''a'''usdehnungs'''k'''oeffizent (WAK)</u> ist ein Materialwert, der angibt, wie stark sich ein Material bei einer Temperaturänderung ausdehnt (''vergrößern, Fachbegriff: expandiert'') oder zusammenzieht (''verkleinern, Fachbegriff: kontrahiert'').
<!--Der WAK wird üblicherweise in der Einheit 1/K (eins durch Kelvin) angegeben. Kelvin ist eine Maßeinheit für die Temperatur und wird in der Wissenschaft und Technik verwendet und gibt an, wie stark sich Atome in einem Stoff bewegen. In Bezug auf Grad Celcius (°C) sind 0 Kelvin das gleiche wie -273,15 Grad Celsius. 273,15 Kelvin sind 0 Grad Celsius und 373,15 Kelvin somit 100 Grad Celsius.-->


== Linearer Wärmeausdehnungskoeffizient α ==
[[File:Längenausdehnungskoeffizient.png|thumb|right|200px| Längenausdehnungskoeffizient ''&alpha; ''bzw. linearer Wärmeausdehnungskoeffizient ''&alpha;'']]


Festkörper vergrößern sich bei Erwärmung. Die Ausdehnung für feste Stoffe (keine Flüssigkeiten oder Gase) wird meist als linearer Wärmeausdehnungskoeffizient ''&alpha;'' oder als Längenausdehnungskoeffizienten α angegeben.  
Der '''W'''ärme'''a'''usdehnungs'''k'''oeffizient (WAK) ist ein Materialwert, der angibt, wie stark sich ein Werkstoff bei Temperaturänderung ausdehnt (auseinandergezogen wird) oder staucht (zusammengedrückt wird). Der WAK-Wert wird normalerweise in 10<sup>-6</sup> · K<sup>-1</sup> angegeben.


Beim Erwärmen dehnen sich Werkstoffe aus. Die Werkstoffe werden gedehnt (auseinandergezogen).


<!--
Beim Abkühlen stauchen sich Werkstoffe. Die Werkstoffe werden gestaucht (zusammengedrückt).


-->
[[File:Kelvin_Grad_Celsius.png|thumb|right|100px| Kelvin und Grad Celsius]]Die '''Einheit Kelvin (K)''' ist wie Grad Celsius eine Temperatureinheit (siehe Abbildung rechts). Eine Temperaturänderung von 1 Kelvin ist dasselbe wie eine Temperaturänderung von 1 °C.
 
'''Ein Beispiel''': Ein 1 Meter lange Kupferstange mit einem Wärmeausdehnungskoeffizienten von 16,4 · 10<sup>-6</sup> 1/K wird sich bei einer Temperaturerhöhung um 1 Kelvin auf 1,0000164 Meter dehnen.
<br><br><br><br>


== Bedeutung des WAK in der Zahntechnik ==
== Bedeutung des WAK in der Zahntechnik ==
[[File:Aufbrennlegierung_Keramik_Verbindungsbereich.png|thumb|right|200px|Die Aufbrennlegierung und Keramik sind im Verbindungsbereich miteinander verbunden]]
Bei einer Verblendkeramik wird die Keramik auf eine Aufbrennlegierung gebrannt. Nach dem Brand kühlen sich die Keramik und die Aufbrennlegierung gemeinsam ab. Die Keramik ist im Verbindungsbereich zwischen Keramik und Aufbrennlegierung fest mit der Aufbrennlegierung verbunden. Im Verbindungsbereich sind bei dem Abkühlvorgang beide Werkstoffe gezwungen sich gleich zu stauchen, auch wenn beide Werkstoffe unterschiedliche WAK-Werte haben und sich somit normalerweise anders stauchen würden.
'''Im Verbindungsbereich sind Aufbrennlegierung und Keramik fest miteinander verbunden'''.
'''Im Verbindungsbereich''' werden beim Abkühlvorgang die Aufbrennlegierung und Keramik gezwungen sich '''gleich zu stauchen''', auch wenn Sie unterschiedliche WAK-Werte haben.
'''Im äußeren Bereich''' werden sich beim Abkühlvorgang die Aufbrennlegierung und Keramik '''normal stauchen'''.
Deutlich wird dies in den folgenden 3 Fällen:
'''1. WAK_Legierung = WAK_Keramik'''. (Der WAK der Legierung ist gleich dem WAK der Keramik.)
'''2. WAK_Legierung < WAK_Keramik'''. (Der WAK der Legierung ist kleiner als der WAK der Keramik.)
'''3. WAK_Legierung > WAK_Keramik'''. (Der WAK der Legierung ist größer als der WAK der Keramik.)
=== 1. WAK_Legierung = WAK_Keramik. Der WAK der Legierung ist gleich dem WAK der Keramik. ===


Der WAK von Dentallegierungen ist in Legierungstabellen von großer Bedeutung. Deutlich wird dies bei der keramischen Verblendung. Dabei können 3 Fälle auftreten:
[[File:Aufbrennlegierung_gleich_Keramik_WAK.png|thumb|right|200px| WAK_Legierung = WAK_Keramik]]Im Abkühlvorgang stauchen sich die Legierung und die Keramik gleich stark.


1. Der WAK der Legierung ist gleich dem WAK der Keramik. WAK_Legierung = WAK_Keramik.
Leider gibt es dies in der Praxis nie, da man nie absolut gleiche WAK-Werte bei zwei Stoffen erreichen kann. Daher werden in Legierungstabellen meist mittlere WAK-Werte angegeben oder Bereiche (von ... bis ...), da man immer Unterschiede hat.


2. Der WAK der Legierung ist größer als der WAK der Keramik. WAK_Legierung > WAK_Keramik.
Der WAK der Legierung und der Keramik sind praktisch nie gleich. Daher gibt es diese Situation in der Praxis nie.


3. Der WAK der Legierung ist kleiner als der WAK der Keramik. WAK_Legierung < WAK_Keramik.
<br><br><br><br><br><br><br>


=== 1. Der WAK der Legierung ist gleich dem WAK der Keramik. ===
=== 2. WAK_Legierung < WAK_Keramik. Der WAK der Legierung ist kleiner als der WAK der Keramik. ===
[[File:Wak.gif|thumb|100px|right|WAK_Legierung = WAK_Keramik]]Beide Stoffe dehnen (expandieren) sich bei Erwärmung gleich stark. Leider ist dies <u>technisch meist nicht möglich</u>, da es immer zu kleinen Abweichungen bei der Produktion kommen kann. Da Fall 1 nie vorkommt, schauen wir uns Fall 2 und Fall 3 an.
[[File:WAK_schlecht_2.png|thumb|right|200px|WAK_Legierung < WAK_Keramik]]
<br><br><br>
Im Abkühlvorgang staucht sich die Keramik normalerweise mehr als die Aufbrennlegierung.  
Im '''äußeren Bereich''' kann sich die Keramik und die Aufbrennlegierung im Abkühlvorgang normal stauchen (siehe Abbildung).


=== 2. Der WAK der Legierung ist größer als der WAK der Keramik. ===
Im '''Verbindungsbereich''' kann die Keramik sich nicht so stark stauchen, wie sie normalerweise würde (siehe Abbildung). Im Verbindungsbereich '''wird die Keramik von der Legierung auseinandergezogen''', die Keramik dehnt sich also im Verbindungsbereich stärker. Dies führt zu Zugspannungen. '''Geringe Zugspannungen führen bereits zu Rissen in der Keramik.'''
Im Aufwärmvorgang vergrößert sich die Legierung stärker als die Keramik. Im Abkühlungsvorgang verkleinert sich die Legierung demnach auch stärker als die Keramik. <u>Im äußeren Bereich kann die Keramik sich normal verkleinern</u>. <u>Im Bereich zwischen Keramik und Metall wird die Keramik jedoch zusammen gedrückt, da die Keramik in diesem Bereich an der Legierung haftet. Dabei entstehen Druckspannungen.</u> <u>Druckspannungen sind normalerweise kein Problem für Keramiken</u>.
<br><br><br><br><br><br>
<gallery>
=== 3. WAK_Legierung > WAK_Keramik. Der WAK der Legierung ist größer als der WAK der Keramik. ===
Wak_gut.gif|WAK_Legierung > WAK_Keramik
[[Datei:WAK gut 2.png|thumb|right|200px|WAK_Legierung > WAK_Keramik]]
WAK_gut_2.png|WAK_Legierung > WAK_Keramik, obere Kante der Keramik normale Kontraktion, untere Kante der Keramik gezwungene Kontraktion
Im Abkühlungsvorgang staucht sich die Keramik normalerweise weniger als die Legierung.
</gallery>
Im '''äußeren Bereich''' kann sich die Keramik und die Aufbrennlegierung im Abkühlvorgang normal stauchen (siehe Abbildung).
<br>


=== 3. Der WAK der Legierung ist kleiner als der WAK der Keramik. ===
Im '''Verbindungsbereich''' kann die Keramik sich nicht so stark stauchen, wie sie normalerweise würde (siehe Abbildung). Im Verbindungsbereich '''wird die Keramik von der Legierung zusammengedrückt''', die Keramik staucht sich also im Verbindungsbereich stärker. Keramiken können großen Druckspannungen widerstehen. '''Der WAK der Keramik darf bis zu 1·10<sup>-6</sup> 1/K kleiner sein.'''
Im Aufwärmvorgang vergrößert sich die Keramik stärker als die Legierung. Im Abkühlungsvorgang verkleinert sich die Keramik auch stärker als die Legierung. <u>Im äußeren Bereich kann sich die Keramik normal verkleinern</u>. <u>Im Bereich zwischen Keramik und Metall wird die Keramik jedoch auseinander gezogen und es entstehen Zugspannungen, da die Keramik in diesem Bereich an der Legierung haftet</u>. Dabei entstehen Zugspannungen. <u>Zugspannungen sind normalerweise ein Problem für Keramiken und führen schnell zu Rissen.</u>
<br><br><br><br>
<gallery>
Wak_schlecht.gif|WAK_Legierung < WAK_Keramik
WAK_schlecht_2.png|WAK_Legierung < WAK_Keramik, obere Kante der Keramik normale Kontraktion, untere Kante der Keramik gezwungene Kontraktion
</gallery>
<br>


=== Optimaler Legierungs-WAK und der Grund für Risse und Abplatzungen in der Verblendung ===
=== Optimaler Legierungs-WAK und der Grund für Risse und Abplatzungen in der Verblendung ===
<u>Die Legierung und die Keramik müssen demnach aufeinander abgestimmt sein. Am besten ist für die Legierung ein um 0,5 bis 1 µm/m*K größeren linearer WAK-Wert (WAK_Legierung > WAK_Keramik).</u> So wird die Legierung bei der Abkühlung stärker verkleinert und die Keramik (die an der Legierung haftet) wird leicht zusammengedrückt (siehe Fall 2: WAK_Legierung > WAK_Keramik).
Die Legierung und die Keramik müssen aufeinander abgestimmt sein. Optimal ist für die Legierung ein um 0,5 bis 1 ·10<sup>-6</sup> 1/K größeren WAK-Wert. So staucht sich die Legierung bei der Abkühlung stärker und die Keramik (die an der Legierung haftet) wird leicht zusammengedrückt (siehe Fall 3: WAK_Legierung > WAK_Keramik).


Ist der WAK der Legierung viel größer als der WAK der Keramik führt dies zu <u>Abplatzungen</u>, da die Keramik gezwungen wird, stark zu schrumpfen und somit die Druckspannung (Keramik wird zusammengedrückt) sehr hoch wird. Ist der WAK der Legierung viel kleiner als der WAK der Keramik, führt dies zu <u>Rissen</u>, da die Keramik gezwungen wird, sich stark auszudehnen und somit die Zugspannung (Keramik wird auseinander gezogen) sehr hoch wird.
Ist der WAK der Legierung viel größer als der WAK der Keramik führt dies zu Abplatzungen, da die Keramik gezwungen wird, stark zu schrumpfen und somit die Druckspannung (Keramik wird zusammengedrückt) zu hoch wird. Ist der WAK der Legierung viel kleiner als der WAK der Keramik, führt dies zu Rissen, da die Keramik gezwungen wird, sich stark auszudehnen und somit die Zugspannung (Keramik wird auseinander gezogen) zu hoch wird.


<gallery>
<gallery>

Aktuelle Version vom 29. Oktober 2023, 12:14 Uhr

Link zur übergeordneten Seite

Wärmeausdehnungskoeffizient

Der Wärmeausdehnungskoeffizient (WAK) ist ein Materialwert, der angibt, wie stark sich ein Werkstoff bei Temperaturänderung ausdehnt (auseinandergezogen wird) oder staucht (zusammengedrückt wird). Der WAK-Wert wird normalerweise in 10-6 · K-1 angegeben.

Beim Erwärmen dehnen sich Werkstoffe aus. Die Werkstoffe werden gedehnt (auseinandergezogen).
Beim Abkühlen stauchen sich Werkstoffe. Die Werkstoffe werden gestaucht (zusammengedrückt).
Kelvin und Grad Celsius

Die Einheit Kelvin (K) ist wie Grad Celsius eine Temperatureinheit (siehe Abbildung rechts). Eine Temperaturänderung von 1 Kelvin ist dasselbe wie eine Temperaturänderung von 1 °C.

Ein Beispiel: Ein 1 Meter lange Kupferstange mit einem Wärmeausdehnungskoeffizienten von 16,4 · 10-6 1/K wird sich bei einer Temperaturerhöhung um 1 Kelvin auf 1,0000164 Meter dehnen.



Bedeutung des WAK in der Zahntechnik

Die Aufbrennlegierung und Keramik sind im Verbindungsbereich miteinander verbunden

Bei einer Verblendkeramik wird die Keramik auf eine Aufbrennlegierung gebrannt. Nach dem Brand kühlen sich die Keramik und die Aufbrennlegierung gemeinsam ab. Die Keramik ist im Verbindungsbereich zwischen Keramik und Aufbrennlegierung fest mit der Aufbrennlegierung verbunden. Im Verbindungsbereich sind bei dem Abkühlvorgang beide Werkstoffe gezwungen sich gleich zu stauchen, auch wenn beide Werkstoffe unterschiedliche WAK-Werte haben und sich somit normalerweise anders stauchen würden.

Im Verbindungsbereich sind Aufbrennlegierung und Keramik fest miteinander verbunden.
Im Verbindungsbereich werden beim Abkühlvorgang die Aufbrennlegierung und Keramik gezwungen sich gleich zu stauchen, auch wenn Sie unterschiedliche WAK-Werte haben.
Im äußeren Bereich werden sich beim Abkühlvorgang die Aufbrennlegierung und Keramik normal stauchen.


Deutlich wird dies in den folgenden 3 Fällen:

1. WAK_Legierung = WAK_Keramik. (Der WAK der Legierung ist gleich dem WAK der Keramik.)

2. WAK_Legierung < WAK_Keramik. (Der WAK der Legierung ist kleiner als der WAK der Keramik.)

3. WAK_Legierung > WAK_Keramik. (Der WAK der Legierung ist größer als der WAK der Keramik.)


1. WAK_Legierung = WAK_Keramik. Der WAK der Legierung ist gleich dem WAK der Keramik.

WAK_Legierung = WAK_Keramik

Im Abkühlvorgang stauchen sich die Legierung und die Keramik gleich stark.

Leider gibt es dies in der Praxis nie, da man nie absolut gleiche WAK-Werte bei zwei Stoffen erreichen kann. Daher werden in Legierungstabellen meist mittlere WAK-Werte angegeben oder Bereiche (von ... bis ...), da man immer Unterschiede hat.

Der WAK der Legierung und der Keramik sind praktisch nie gleich. Daher gibt es diese Situation in der Praxis nie.








2. WAK_Legierung < WAK_Keramik. Der WAK der Legierung ist kleiner als der WAK der Keramik.

WAK_Legierung < WAK_Keramik

Im Abkühlvorgang staucht sich die Keramik normalerweise mehr als die Aufbrennlegierung.

Im äußeren Bereich kann sich die Keramik und die Aufbrennlegierung im Abkühlvorgang normal stauchen (siehe Abbildung).
Im Verbindungsbereich kann die Keramik sich nicht so stark stauchen, wie sie normalerweise würde (siehe Abbildung). Im Verbindungsbereich wird die Keramik von der Legierung auseinandergezogen, die Keramik dehnt sich also im Verbindungsbereich stärker. Dies führt zu Zugspannungen. Geringe Zugspannungen führen bereits zu Rissen in der Keramik.







3. WAK_Legierung > WAK_Keramik. Der WAK der Legierung ist größer als der WAK der Keramik.

WAK_Legierung > WAK_Keramik

Im Abkühlungsvorgang staucht sich die Keramik normalerweise weniger als die Legierung.

Im äußeren Bereich kann sich die Keramik und die Aufbrennlegierung im Abkühlvorgang normal stauchen (siehe Abbildung).
Im Verbindungsbereich kann die Keramik sich nicht so stark stauchen, wie sie normalerweise würde (siehe Abbildung). Im Verbindungsbereich wird die Keramik von der Legierung zusammengedrückt, die Keramik staucht sich also im Verbindungsbereich stärker. Keramiken können großen Druckspannungen widerstehen. Der WAK der Keramik darf bis zu 1·10-6 1/K kleiner sein.





Optimaler Legierungs-WAK und der Grund für Risse und Abplatzungen in der Verblendung

Die Legierung und die Keramik müssen aufeinander abgestimmt sein. Optimal ist für die Legierung ein um 0,5 bis 1 ·10-6 1/K größeren WAK-Wert. So staucht sich die Legierung bei der Abkühlung stärker und die Keramik (die an der Legierung haftet) wird leicht zusammengedrückt (siehe Fall 3: WAK_Legierung > WAK_Keramik).

Ist der WAK der Legierung viel größer als der WAK der Keramik führt dies zu Abplatzungen, da die Keramik gezwungen wird, stark zu schrumpfen und somit die Druckspannung (Keramik wird zusammengedrückt) zu hoch wird. Ist der WAK der Legierung viel kleiner als der WAK der Keramik, führt dies zu Rissen, da die Keramik gezwungen wird, sich stark auszudehnen und somit die Zugspannung (Keramik wird auseinander gezogen) zu hoch wird.