1998 LS 8.1 Dichte info schwer: Unterschied zwischen den Versionen

Aus Wikidental.de
Keine Bearbeitungszusammenfassung
 
(101 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 1: Zeile 1:
[[1998 LS 8.1 Dichte| Link zur übergeordneten Seite]]
[[1998 LS 8.1 Dichte| Link zur übergeordneten Seite]]


== Einleitung ==
== Einleitung ==
Bevor Sie die Legierungsmaterialkosten berechnen können sollten Sie sich zunächst über die Dichte informieren. Dies ist von Bedeutung, wenn Sie wissen wollen was sie tun.
<div style="border:1px solid black; padding:10px; display:inline-block;">
<math> \text{Legierungsmaterialkosten} = \text{Preis} \times \text{Legierungsmasse}</math>
</div>
(Preis steht in der Legierungstabelle; Legierungsmasse ist unbekannt)
Um die Legierungsmasse zu bestimmen müssen Sie sich erst mit der Dichte beschäftigen, diese werden Sie brauchen.
<!--
Formel Legierungsmaterialkosten
Legierungsmaterialkosten = Preis in €/g mal Legierungsmasse in g
Preis steht in der Legierungstabelle. Legierungsmasse ist unbekannt.
Legierungsmasse kann über einen Dreisatz bestimmt werden, wenn die Masse der Wachsmodellation bekannt ist und man die Dichte kennt.
Die Dichte kann durch Messung der Wachsmodellationmasse und Messung des Wachsmodellationsvolumens bestimmt werden.
Hinweis: Es würde auch über das Volumen der Wachsmodellation gehen, das Volumen lässt sich allerdings nicht so genau bestimmen und man müsste jedesmal umständlich das Volumen bestimmen anstelle einfach das Gewicht zu bestimmen.
-->
== Dichte ==
Sie haben bestimmt schon gesagt oder gedacht: "Gold ist doch schwerer als Wachs".  
Sie haben bestimmt schon gesagt oder gedacht: "Gold ist doch schwerer als Wachs".  
Dies ist jedoch nicht ganz richtig, da eine große Menge Wachs schwerer sein kann als ein kleines Stückchen Gold. Es kommt auch auf die "Menge" an, also auf das Volumen. Richtig ausgedrückt müsste man sagen: "Gold hat eine höhere Dichte als Wachs".


Dies ist jedoch nicht ganz richtig, da eine große Menge Wachs schwerer sein kann als ein kleines Stückchen Gold. Es kommt auch auf die "Menge" an, bzw. auf das Volumen.


Richtig ausgedrückt müsste man sagen: "Gold hat eine höhere Dichte als Wachs". Aber warum genau?
== Dichte, das Verhältnis von Masse zu Volumen eines Körpers ==


Körper (z.B. Brücken) können aus unterschiedlichen Stoffen bestehen, welche unterschiedliche Dichten haben. Zum Beispiel hat Aluminium eine Dichte von 2,7 g/cm³, Kupfer von 8,96 g/cm³ und reines Gold eine Dichte von 19,3 g/cm³.


<div style="border:1px solid black; padding:10px; display:inline-block;">
Die Dichte ρ (Rho) eines Körpers ist das Verhältnis von Masse zu Volumen:
Die Dichte ρ (Rho) eines Körpers ist das Verhältnis von Masse zu Volumen:


<div style="border:1px solid black; padding:10px; display:inline-block;">
<math>Dichte = \rho = \frac{m}{V} = \frac{\text{Masse}}{\text{Volumen}}</math>
<math>Dichte = \rho = \frac{m}{V} = \frac{\text{Masse}}{\text{Volumen}}</math>
</div>
</div>


Zum Beispiel hat Aluminium eine Dichte von 2,7 g/cm³, Kupfer von 8,96 g/cm³ und reines Gold eine Dichte von 19,3 g/cm³.


Körper aus einem bestimmten Stoff, wie z. B. eine NEM-Legierung, können eine beliebige Größe (Volumen) oder Masse besitzen, aber die Dichte eines Stoffes bleibt immer gleich.


=== Unterschiedliche Masse bei gleichem Volumen ===
Körper (z.B. Würfel) aus unterschiedlichen Stoffen (unterschiedlichen Dichten) können also trotz gleichem Volumen unterschiedliche Massen haben.


'''Beispiel:'''
[[File:Dichte_Würfel.png|200px|rechts|mini|Würfel aus unterschiedlichen Stoffen (unterschiedliche Dichten) mit unterschiedlicher Masse aber selben Volumen]]


Eine kleines NEM-Inlay hat ein Gewicht von ca. 1 g und ein Volumen von ca. 0,115 cm<sup>3</sup>.  
Wenn die Dichte dreimal so hoch ist, muss die Masse auch dreimal so hoch sein, bei gleichbleibendem Volumen.  


Eine großere NEM-Krone hat ein Gewicht von ca. 4 g und ein Volumen von ca. 0,46 cm<sup>3</sup>.
<math> \text{Dichte} \uparrow = \frac{\text{Masse} \uparrow}{\text{Volumen}} </math>


Vervierfacht sich das gewicht, vervierfacht sich auch das Volumen. Die Dichte der NEM-Legierung und damit das Verhältnis von Masse zu Volumen bleibt immer bei 8,7 g/cm<sup>3</sup> und damit gleich.
Eine höhere Dichte (Dichte ↑; anstelle Aluminium wird Kupfer verwendet) führt zu einer höheren Masse
(Masse ↑), bei gleichbleibendem Volumen. Die beiden Seiten der Gleichung müssen ausgeglichen sein.


Das Verhältnis von Masse zu Volumen bleibt also gleich. Erhöht sich das Volumen, muss sich auch die Masse erhöhen und umgekehrt. Dies nennt man Proportionalität.
Berechnungsbeispiel:
Wenn Alumiunium (Dichte 2,7 g/cm3) durch Kupfer (Dichte 8,96 g/cm3) ersetzt wird, dann ist das Verhältnis DichteKupfer/DichteAluminium= 8,96 / 2,7  = 3,3 bei gleichbleibendem Volumen. Da beide Seiten der Gleichung ausgeglichen sein müssen, muss die Masse auch 3,3 mal höher sein, bei gleichbleibendem Volumen.




=== Die Dichte in der Zahntechnik ===
[[File:Dichte_Wachs_Gold.png|200px|rechts|mini|Das Volumen der Wachskrone ist genauso groß wie das Volumen der Legierungskrone, aber die Massen unterscheiden sich]]
Schauen wir uns nun den Herstellungsprozess einer Brücke an und sehen, ob uns diese Informationen helfen:
Beim Gießen von Zahnersatz (z.B. Kronen, Brücken) wird die Wachsmodellation ausgebrannt und mit einer Legierung befüllt. Das Volumen der Wachsbrücke und der Legierungsbrücke bleibt aber gleich. Sonst würde der Zahnersatz später nicht mehr auf das Modell passen.


Wie bei den Würfeln wissen wir jetzt schon: Die Dichte der Legierung muss x-mal so groß sein wie die von Wachs. Obwohl beide Brücken das gleiche Volumen haben, muss die Legierungsbrücke x-mal so viel Masse haben wie die Wachsbrücke.




<div style="border:1px solid black; padding:10px; display:inline-block;">
<math> Masse_{Legierungsbrücke} = x \times Masse_{Wachsbrücke} </math>
</div>


'''Aber was, wenn wir das Volumen eines Stoffes mit einem anderen Stoff ausfüllen wollen?'''
Dabei ist x ist das Verhältnis der Dichte der Legierung zur Dichte von Wachs.
 
Beim Gießen von Zahnersatz (z.B. Kronen, Brücken, Inlays) wird die Wachsmodellation ausgebrannt und mit einer Legierung befüllt. Das Volumen des Zahnersatzes bleibt aber gleich. Sonst würde der Zahnersatz später nicht mehr auf das Modell passen.
 
<gallery>
File:Inlay_making_08_wikipedia.JPG| Wachsmodellation
File:Inlay_making_18_wikipedia.JPG| Gegossene Modellation
</gallery>Vor dem Gießen muss man aber die Legierungsmasse bestimmen.
 
==== Berechnung der Legierungsmasse ====
--- Bild Volumen und Gewicht Wachsmodellation und Volumen und Gewicht Legierung
 
Da beide Materialien (Wachs und Legierung) den gleichen Raum einnehmen (gleiches Volumen), aber die Legierung eine viel höhere Dichte hat, muss sie viel "schwerer" sein als das Wachs.
 
 
Beispiel:
Die Dichte der NEM-Legierung ist z.B. 8,7 mal zu höher als die Dichte der Wachsmodellation. Die Volumen sind gleich groß. Daher muss die Masse auch 8,7 mal höher sein.


<div style="border:1px solid black; padding:10px; display:inline-block;">
<div style="border:1px solid black; padding:10px; display:inline-block;">
<math> Masse_{Legierung} = \left( \frac{\rho_{Legierung}}{\rho_{Wachs}} \right) \times m_{Wachs} </math>
<math> Masse_{Legierungsbrücke} = \left( \frac{Dichte_{Legierung}}{Dichte_{Wachs}} \right) \times Masse_{Wachsbrücke} </math>
</div>
</div>


<!--
Die Dichte der Legierung "Vielgoldium" kann der Legierungstabelle entnommen werden.
Bei dem proportionalen Dreisatz kann ''„über Kreuz“'' gerechnet, das heißt, dass der Wert oben rechts mit dem Wert unten links multipliziert und dann durch den Wert oben links dividiert wird (8,7g/cm<sup>3</sup> * 4g / 1g/cm<sup>3</sup> = 17,4g). Das Ergebnis lautet 17,4 g.
Wenn wir also die Dichte von Wachs und die Masse der Wachsbrücke bestimmen, können wir die Legierungsmasse berechnen.


<div style="border:1px solid black; padding:10px; display:inline-block;">
'''Bestimmung der Dichte'''
{| class="wikitable"
|+Beispiel mit einer NEM-Legierung
!
!Wachs
!NEM-Legierung
|-
|'''Dichte'''
|1 g/cm<sup>3</sup>
|8,7 g/cm<sup>3</sup>
|-
|'''Masse'''
|4 g
|'''17,4 g'''
|}
</div>
-->


Hinweis: Die Legierungsmasse könnte auch direkt über das Volumen der Wachsmodellation bestimmt werden, das Volumen lässt sich allerdings nicht so genau bestimmen und man müsste jedesmal umständlich das Volumen bestimmen anstelle einfach das Gewicht zu bestimmen.


==== Berechnung der Legierungsmaterialkosten ====
Die Dichte kann durch Einsetzten der Masse und des Volumens bestimmt werden. Der Wert sollte bei etwa 1 g/cm3 liegen. Die Masse von Wachs können Sie mithilfe einer Waage bestimmen. Das Volumen von Wachs bestimmen Sie mithilfe eines Messzylinders mit Wasser (ml = cm3). Die Dichte der Legierung ist in der Legierungstabelle angegeben.
Mit bekannter Legierungsmasse können nun die erwarteten Legierungsmaterialkosten berechnen werden:


<div style="border:1px solid black; padding:10px; display:inline-block;">
<div style="border:1px solid black; padding:10px; display:inline-block;">
<math>\text{Legierungsmaterialkosten} = Masse_{\text{Legierung}} \times \text{Preis}_{\text{Legierung}}</math>
<math> Dichte_{\text{Wachs}} = \frac{Masse_{\text{Wachsbrücke}}}{Volumen_{\text{Wachsbrücke}}} </math>
</div>
</div>


mit Legierungsmaterialkosten in €, Masse in g und Preis in €/g.
'''Berechnung der Legierungsmaterialkosten'''


 
Mit bekannter Legierungsmasse können nun die erwarteten Legierungsmaterialkosten berechnet werden:
 
Hinweis: Die tatsächliche Legierungsmaterialkosten erhalten wir erst nach dem Ausbetten durch wiegen des vom Gusskanal abgetrennten Zahnersatzes. Der berechnete Wert sollte aber sehr nah dran liegen.
 
=== Messung der Dichte bei Festkörpern ===
Die Dichte von Festkörpern kann bei einfachen Formen durch die ganzen Formeln berechnet werden, welche man im Matheuntertericht kennen gelernt hat. Die Dichte von komplizierten Festkörpern kann man folgendermaßen bestimmen:
 
==== Messung der Masse ====
Die Masse wird gewogen.
 
==== Einfache Messung des Volumens ====
--- Skizze Messzylinder und Objekt vor dem eintachen und nach dem eintauchen
 
Um das Volumen zu bestimmen kann das Objekt in einen Messzylinder mit einer Flüssigkeit eingetaucht werden. Zunächst notiert man sich das Volumen der Flüssigkeit durch Ablesen (Volumen in ml vorher). Anschließend taucht man den Festkörper möglichst blasenfrei ein. Durch das eintauchen des Festkörpers wird Flüssigkeit verdrängt. Die verdängte Flüssigkeit steigt hoch und lässt sich ablesen (Volumen in ml nachher). Die Differenz (Differenz = Volumen in ml nachher - Volumen in ml vorher) ist das Volumen des Zahnersatzes. Beachten Sie: ml = cm<sup>3</sup>.


<div style="border:1px solid black; padding:10px; display:inline-block;">
<div style="border:1px solid black; padding:10px; display:inline-block;">
Volumen der Wachsmodellation = Wasserstand nach dem Eintauchen - Wasserstand vor dem Eintauchen
<math>\text{Legierungsmaterialkosten} = Masse_{\text{Legierungbrücke}} \times \text{Preis}_{\text{Legierung}}</math>
</div>
</div>


<!-- <math> \text{Volumen der Wachsmodellation} = \text{Volumen von Wasser nach dem Eintauchen der Wachsmodellation} - \text{Volumen von Wasser vor dem Eintauchen der Wachsmodellation} </math> -->
mit Legierungsmaterialkosten in €, Masse in g und Preis in €/g.
Hinweis: Die tatsächliche Legierungsmaterialkosten erhalten wir erst nach dem Ausbetten durch Wiegen der vom Gusskanal abgetrennten Brücke. Der berechnete Wert sollte aber sehr nah dran liegen.


==== Messung des Volumens durch das archimedische Prinzip ====
'''Sprinterinhalte:'''


 
Die Würfel stehen zum Versuch zur Verfügung. Probieren Sie es selbst aus.
==== Dichte berechnen ====
Die Dichte kann durch einsetzten der Masse und des Volumens bestimmt werden. Der Wert sollte in der nähe von 1 g/cm<sup>3</sup> liegen.
 
<div style="border:1px solid black; padding:10px; display:inline-block;">
<math> \rho_{\text{Wachs}} = \frac{m_{\text{Wachs}}}{V_{\text{Wachsmodellation}}} </math>
</div>

Aktuelle Version vom 27. September 2023, 17:32 Uhr

Link zur übergeordneten Seite


Einleitung

Sie haben bestimmt schon gesagt oder gedacht: "Gold ist doch schwerer als Wachs". Dies ist jedoch nicht ganz richtig, da eine große Menge Wachs schwerer sein kann als ein kleines Stückchen Gold. Es kommt auch auf die "Menge" an, also auf das Volumen. Richtig ausgedrückt müsste man sagen: "Gold hat eine höhere Dichte als Wachs".


Dichte, das Verhältnis von Masse zu Volumen eines Körpers

Körper (z.B. Brücken) können aus unterschiedlichen Stoffen bestehen, welche unterschiedliche Dichten haben. Zum Beispiel hat Aluminium eine Dichte von 2,7 g/cm³, Kupfer von 8,96 g/cm³ und reines Gold eine Dichte von 19,3 g/cm³.

Die Dichte ρ (Rho) eines Körpers ist das Verhältnis von Masse zu Volumen:

[math]\displaystyle{ Dichte = \rho = \frac{m}{V} = \frac{\text{Masse}}{\text{Volumen}} }[/math]

Zum Beispiel hat Aluminium eine Dichte von 2,7 g/cm³, Kupfer von 8,96 g/cm³ und reines Gold eine Dichte von 19,3 g/cm³.


Unterschiedliche Masse bei gleichem Volumen

Körper (z.B. Würfel) aus unterschiedlichen Stoffen (unterschiedlichen Dichten) können also trotz gleichem Volumen unterschiedliche Massen haben.

Würfel aus unterschiedlichen Stoffen (unterschiedliche Dichten) mit unterschiedlicher Masse aber selben Volumen

Wenn die Dichte dreimal so hoch ist, muss die Masse auch dreimal so hoch sein, bei gleichbleibendem Volumen.

[math]\displaystyle{ \text{Dichte} \uparrow = \frac{\text{Masse} \uparrow}{\text{Volumen}} }[/math]

Eine höhere Dichte (Dichte ↑; anstelle Aluminium wird Kupfer verwendet) führt zu einer höheren Masse (Masse ↑), bei gleichbleibendem Volumen. Die beiden Seiten der Gleichung müssen ausgeglichen sein.

Berechnungsbeispiel: Wenn Alumiunium (Dichte 2,7 g/cm3) durch Kupfer (Dichte 8,96 g/cm3) ersetzt wird, dann ist das Verhältnis DichteKupfer/DichteAluminium= 8,96 / 2,7 = 3,3 bei gleichbleibendem Volumen. Da beide Seiten der Gleichung ausgeglichen sein müssen, muss die Masse auch 3,3 mal höher sein, bei gleichbleibendem Volumen.


Die Dichte in der Zahntechnik

Das Volumen der Wachskrone ist genauso groß wie das Volumen der Legierungskrone, aber die Massen unterscheiden sich

Schauen wir uns nun den Herstellungsprozess einer Brücke an und sehen, ob uns diese Informationen helfen: Beim Gießen von Zahnersatz (z.B. Kronen, Brücken) wird die Wachsmodellation ausgebrannt und mit einer Legierung befüllt. Das Volumen der Wachsbrücke und der Legierungsbrücke bleibt aber gleich. Sonst würde der Zahnersatz später nicht mehr auf das Modell passen.

Wie bei den Würfeln wissen wir jetzt schon: Die Dichte der Legierung muss x-mal so groß sein wie die von Wachs. Obwohl beide Brücken das gleiche Volumen haben, muss die Legierungsbrücke x-mal so viel Masse haben wie die Wachsbrücke.


[math]\displaystyle{ Masse_{Legierungsbrücke} = x \times Masse_{Wachsbrücke} }[/math]

Dabei ist x ist das Verhältnis der Dichte der Legierung zur Dichte von Wachs.

[math]\displaystyle{ Masse_{Legierungsbrücke} = \left( \frac{Dichte_{Legierung}}{Dichte_{Wachs}} \right) \times Masse_{Wachsbrücke} }[/math]

Die Dichte der Legierung "Vielgoldium" kann der Legierungstabelle entnommen werden. Wenn wir also die Dichte von Wachs und die Masse der Wachsbrücke bestimmen, können wir die Legierungsmasse berechnen.

Bestimmung der Dichte


Die Dichte kann durch Einsetzten der Masse und des Volumens bestimmt werden. Der Wert sollte bei etwa 1 g/cm3 liegen. Die Masse von Wachs können Sie mithilfe einer Waage bestimmen. Das Volumen von Wachs bestimmen Sie mithilfe eines Messzylinders mit Wasser (ml = cm3). Die Dichte der Legierung ist in der Legierungstabelle angegeben.

[math]\displaystyle{ Dichte_{\text{Wachs}} = \frac{Masse_{\text{Wachsbrücke}}}{Volumen_{\text{Wachsbrücke}}} }[/math]

Berechnung der Legierungsmaterialkosten

Mit bekannter Legierungsmasse können nun die erwarteten Legierungsmaterialkosten berechnet werden:

[math]\displaystyle{ \text{Legierungsmaterialkosten} = Masse_{\text{Legierungbrücke}} \times \text{Preis}_{\text{Legierung}} }[/math]

mit Legierungsmaterialkosten in €, Masse in g und Preis in €/g. Hinweis: Die tatsächliche Legierungsmaterialkosten erhalten wir erst nach dem Ausbetten durch Wiegen der vom Gusskanal abgetrennten Brücke. Der berechnete Wert sollte aber sehr nah dran liegen.

Sprinterinhalte:

Die Würfel stehen zum Versuch zur Verfügung. Probieren Sie es selbst aus.