LS4.2 Verarbeitung von Autopolymerisat: Unterschied zwischen den Versionen

Aus Wikidental.de
Keine Bearbeitungszusammenfassung
 
(15 dazwischenliegende Versionen von 3 Benutzern werden nicht angezeigt)
Zeile 2: Zeile 2:




Du hast während Deinmer bisherigen Ausbildung sicherlich schon mit Autopolymerisat eine Prothese repariert oder unterfüttert. Du kennst die Arbeitsschritte und verwendest den Drucktopf zum Aushärten (Polymerisation). Hast Du die Verarbeitungsanleitung für das Autopolymerisat schon mal gelesen ;-)?
 
Du hast während Deiner bisherigen Ausbildung sicherlich schon mit Autopolymerisat eine Prothese repariert oder unterfüttert. Du kennst die Arbeitsschritte und verwendest den Drucktopf zum Aushärten (Polymerisation). Hast Du die Verarbeitungsanleitung für das Autopolymerisat schon mal gelesen ;-)?


Die '''Polymerisation von Methylmethacrylat''' sollte dir grundsätzlich in Bezug auf Auto- und Photopolymerisat aus der [[Radikalische Polymerisation | Lernsituation 2.1]] bekannt sein.
Die '''Polymerisation von Methylmethacrylat''' sollte dir grundsätzlich in Bezug auf Auto- und Photopolymerisat aus der [[Radikalische Polymerisation | Lernsituation 2.1]] bekannt sein.
Zeile 9: Zeile 10:
===Wiederholung Polymerisation===
===Wiederholung Polymerisation===


'''Überprüfe''' nun zunächst Dein Wissen aus der [[Radikalische Polymerisation | Lernsituation 2.1]] mit den beiden folgenden Übungen:
'''Überprüfe''' nun zunächst Dein Wissen aus der[[Radikalische Polymerisation | Lernsituation 2.1]] mit den beiden folgenden Übungen:


Als Lernende des '''ADBK Düsseldorf''' führst Du die Übungen bitte in Deinem [[Lernmanagementsystem ADBK | Lernmanagementsystem (LMS)]] aus! Nur dort erhältst Du auch eine Bewertung für die Übung.
Als Lernende des '''ADBK Düsseldorf''' führst Du die Übungen bitte in Deinem [[Lernmanagementsystem ADBK | Lernmanagementsystem (LMS)]] aus! Nur dort erhältst Du auch eine Bewertung für die Übung.
Zeile 25: Zeile 26:
   style="height: 0px;" id="6628ccf2e25846628ccf2e25861-h5player">
   style="height: 0px;" id="6628ccf2e25846628ccf2e25861-h5player">
</iframe><script src="https://ad-bk.lms.schulon.org/h5p/h5plib/v124/joubel/core/js/h5p-resizer.js"></script></html>
</iframe><script src="https://ad-bk.lms.schulon.org/h5p/h5plib/v124/joubel/core/js/h5p-resizer.js"></script></html>




Zeile 34: Zeile 36:
*Du hast das Arbeitsmodell für die Reparatur gewässert und isoliert.   
*Du hast das Arbeitsmodell für die Reparatur gewässert und isoliert.   
*Du rauhst die Bruchstelle der Prothese großzügig an, fixierst sie am Modell und benetzt die angerauhten Stellen mit Monomer.
*Du rauhst die Bruchstelle der Prothese großzügig an, fixierst sie am Modell und benetzt die angerauhten Stellen mit Monomer.
Durch das '''Anrauhen''' der Bruchstellen '''vergrößerst''' Du die '''Oberfläche''' dieser Bereiche. Daher ist es wichtig, die Bruchstücke anschließend mit flüssigem Monomer zu benetzen.  Das '''Monomer''' '''dringt''' in den bereits polymerisierten Kunststoff der Prothese '''ein'''. Durch das Vergrößern der Oberfläche dringt mehr Monomer in die Prothese ein und liegt dann zwischen den vorhandenen Ketten.


*Du rührst den Kunststoff aus Momoner und Polymer nach Herstellerangaben an.
*Du rührst den Kunststoff aus Momoner und Polymer nach Herstellerangaben an.
Nun beginnt im angerührten Kunststoff der '''Anquellprozess'''. Die Monomere dringen wie bei der Prothese in die Oberfläche der Polymerkugeln (Perlpolymerisat) ein.


*Du trägst den angerührten Kunststoff großzügig auf oder lässt ihn bei größeren Defekten einlaufen.
*Du trägst den angerührten Kunststoff großzügig auf oder lässt ihn bei größeren Defekten einlaufen.
*Du stellst die Prothese bzw. das Modell mit der Prothese zur Polymerisation nach Herstellerangaben im Drucktopf.
*Du stellst die Prothese bzw. das Modell mit der Prothese zur Polymerisation nach Herstellerangaben in den Drucktopf.<br />


Während er Polymerisation bilden die Momomere Ketten. Wie das abläuft, weißt Du schon (siehe Übung oben). Die '''Monomere''', die sowohl in die Polymerkugeln als auch in die alte Prothese beim Anquellen eingedrungen sind, '''werden''' nun in die '''Ketten''' '''eingebaut'''. Da sie zwischen den alten Ketten liegen, '''umschlingen''' die '''neuen''' '''Ketten''' die '''alten'''. So entsteht ein '''stabiles Netzwerk''' aus alten und neuen '''Polymerketten'''. Es entsteht '''keine''' neue '''chemische Verbindung''' von alten und neuen Ketten zu einer neuen. Es '''entsteht''' eine rein '''physikalische''' Verbindung, da die Ketten sich nur gegenseitig wie oben beschrieben umschlingen. Man nennt solche Verbindungen '''interpenetrierende Netzwerke'''.
<div {{Arbeitsblatt}}>


Im Klassenraum bzw. im [[Lernmanagementsystem ADBK | Lernmanagementsystem (LMS)]]  liegen Verarbeitungsanleitungen für Autopolymerisat eines oder mehrerer Kunststoffhersteller bereit.


'''Vergleiche''' den oben beschriebenen Ablauf mit den Vorgaben der Hersteller und '''notiere''' bei Bedarf mit Hilfe deiner Lehrkraft Besonderheiten der Verarbeitungsanleitung.


<div {{Arbeitsblatt}}>
</div>


Im Klassenraum bzw. im [[Lernmanagementsystem ADBK | Lernmanagementsystem (LMS)]]  liegen Verarbeitungsanleitungen für Autopolymerisat eines oder mehrerer Kunststoffhersteller bereit.


'''Vergleiche''' den oben beschriebenen Ablauf mit den Vorgane der Hersteller und '''notiere''' bei Bedarf mit Hilfe deiner Lehrkraft Besonderheiten der Verarbeitungsanleitung.


</div>


===Isolieren des Modells===
=== Vorbereitung des Modells und der Bruchstelle ===


==== Isolieren des Modells ====
Isolieren bedeutet per Definition, etwas durch eine undurchlässige Schicht schützen.
Isolieren bedeutet per Definition, etwas durch eine undurchlässige Schicht schützen.


Zeile 65: Zeile 63:


Isoliermittel-Pfützen reagieren nicht mehr mit den Ca-Ionen der Gipsoberfläche und führen zu Ungenauigkeiten in der fertigen Arbeit.
Isoliermittel-Pfützen reagieren nicht mehr mit den Ca-Ionen der Gipsoberfläche und führen zu Ungenauigkeiten in der fertigen Arbeit.
==== Anrauen des Kunststoffes ====
Durch das '''Anrauhen''' der Bruchstellen '''vergrößerst''' Du die '''Oberfläche''' dieser Bereiche. Daher ist es wichtig, die Bruchstücke anschließend mit flüssigem Monomer zu benetzen. Das '''Monomer''' '''dringt''' in den bereits polymerisierten Kunststoff der Prothese '''ein'''. Durch das Vergrößern der Oberfläche dringt mehr Monomer in die Prothese ein und liegt dann zwischen den vorhandenen Ketten.
=== Verarbeitung des Kunststoffs ===
==== Anquellprozess ====
Nachdem Du den Kunststoff angerührt hast, beginnt im Kunststoff der '''Anquellprozess'''. Die Monomere dringen wie bei der Prothese in die Oberfläche der Polymerkugeln (Perlpolymerisat) ein.
==== Das Gießverfahren ====
Hierbei werden meistens flüssige Autopolymerisate wie in unserem Beispiel in einen Vorwall gegossen und unter Druck bei 40°C bis 55°C im Wasserbad polymerisiert. Es gibt auch Gießküvetten mit spezieller Dubliermasse. Nach dem Anrühren ist der Kunststoff etwa 3 Minuten lang gießfähig und geht danach in die plastische Phase über. Nach spätestens etwa 10 Minuten (bitte Verarbeitungsanleitung des jeweiligen Kunststoffes beachten!) soll sich die Arbeit im Drucktopf befinden.
Einsatz findet die Methode nicht nur bei Reparaturen, sondern auch bei der Herstellung '''und''' Komplettierung von temporären partiellen Prothesen. Das Verfahren ist vor allem zeitsparend und kostengünstig wegen des geringen apparativen Aufwand und somit bei Reparaturen beliebt.




===Die Polymerisation im Drucktopf <ref>Eichner/Kappert; Zahnärztliche Werkstoffe und ihre Verarbeitung, Hüthing Verlag Heidelberg; 1996; S.217ff</ref><ref>Rieder; Nichtmetalle; Verlag Neuer Merkur; 2018; S.246f</ref>===
===Die Polymerisation im Drucktopf <ref>Eichner/Kappert; Zahnärztliche Werkstoffe und ihre Verarbeitung, Hüthing Verlag Heidelberg; 1996; S.217ff</ref><ref>Rieder; Nichtmetalle; Verlag Neuer Merkur; 2018; S.246f</ref>===
==== Polymerisation ====
Während er Polymerisation bilden die Momomere Ketten. Wie das abläuft, weißt Du bereits (siehe Übung oben). Die '''Monomere''', die sowohl in die Polymerkugeln als auch in die alte Prothese beim Anquellen eingedrungen sind, werden nun in die '''Ketten''' '''eingebaut'''. Da sie zwischen den alten Ketten liegen, '''umschlingen''' die '''neuen''' '''Ketten''' die '''alten'''. So entsteht ein '''stabiles Netzwerk''' aus alten und neuen '''Polymerketten'''.
Es entsteht '''keine''' neue '''chemische Verbindung''' von alten und neuen Ketten zu einer neuen. Die '''entstehende''' Verbindung ist eine rein '''physikalische''' Verbindung, da die Ketten sich nur gegenseitig wie oben beschrieben umschlingen. Man nennt solche Verbindungen '''interpenetrierende Netzwerke'''.


====Wärmeentwicklung====
====Wärmeentwicklung====


Bei der Polymersation von MMA wird ein erhebliche'''Wärme''' freigesetzt. Die sich im Kunststoffteig bewegenden Monomermoleküle verlieren beim Andocken an ein Kettenende ihre Bewegungsenergie. Diese wandelt sich in Wärmeenergie um und werd frei. Die Polymerisation ist daher eine '''exotherme Reaktion'''.
Bei der Polymersation von MMA wird ein erhebliche '''Wärme''' freigesetzt. Die sich im Kunststoffteig bewegenden Monomermoleküle verlieren beim Andocken an ein Kettenende ihre Bewegungsenergie. Diese wandelt sich in Wärmeenergie um und werd frei. Die Polymerisation ist daher eine '''exotherme Reaktion'''.


Diese Wärme muss einerseits so abgeführt werden, dass der Kunststoffteig nicht über '''100,3°C''' warm wird. Bei dieser Temperatur würde das Monomer im Kunststoffteig '''sieden''' (kochen) und weiße sichtbare Bläschen im Kunststoff bilden. Das verschlechtert die Festigkeit und die Ästhetik. Das passiert besonders an '''dicken Stellen''' der Prothesen, an denen die Wärme schlecht abgeführt werden kann!
Diese Wärme muss einerseits so abgeführt werden, dass der Kunststoffteig nicht über '''100,3°C''' warm wird. Bei dieser Temperatur würde das Monomer im Kunststoffteig '''sieden''' (kochen) und weiße sichtbare Bläschen im Kunststoff bilden. Das verschlechtert die Festigkeit und die Ästhetik. Das passiert besonders an '''dicken Stellen''' der Prothesen, an denen die Wärme schlecht abgeführt werden kann!
Zeile 79: Zeile 96:
Der '''Druck von 2 [https://de.wikipedia.org/wiki/Bar_(Einheit) bar]''' im Drucktopf sorgt zusätzlich dafür, dass Siedebläschen verhindert werden. Die Siedetemperatur erhöht sich unter 2 bar Druck bei Monomer auf '''130-140°C'''. Mit steigendem Druck erhöht sich demnach der Siedepunkt. Du darfst den Drucktopf während des Polymerisationsvorgangs daher ''nie öffnen''.
Der '''Druck von 2 [https://de.wikipedia.org/wiki/Bar_(Einheit) bar]''' im Drucktopf sorgt zusätzlich dafür, dass Siedebläschen verhindert werden. Die Siedetemperatur erhöht sich unter 2 bar Druck bei Monomer auf '''130-140°C'''. Mit steigendem Druck erhöht sich demnach der Siedepunkt. Du darfst den Drucktopf während des Polymerisationsvorgangs daher ''nie öffnen''.


Schon gerinfügig geringerer Druck kann dafür sorgen, dass das Monomer bei der Polymerisation im Drucktopf siedet!


====Wasseraufnahme des Monomers====
====Wasseraufnahme des Monomers====


Die Beschleunigung der Polymerisation gegenüber Raumtemperatur verhindert, der noch nicht polymerisierte Teil des Kunststoffteiges Wasser aufnimmt. Dies würde zu einer Weißverfärbung an der Oberfläche des Kunststoffes führen. Monomer kann auf Dauer bis zu ca. 1% Wasser aufnehmen.
Die Beschleunigung der Polymerisation gegenüber Raumtemperatur verhindert, der noch nicht polymerisierte Teil des Kunststoffteiges Wasser aufnimmt. Dies würde zu einer Weißverfärbung an der Oberfläche des Kunststoffes führen. Monomer kann auf Dauer bis zu ca. 1% Wasser aufnehmen.


====Restmonomergehalt====
====Restmonomergehalt====
Zeile 89: Zeile 106:
Die Wärme des Wassers im Drucktopf bewirkt aber im Laufe der Polymerisation eine Beschleunigung der Polymerisation und einen vollständigeren Ablauf. Die Monomermoleküle bleiben im warmen Wasser beweglicher (mehr Bewegungsenergie) und können so besser zufällig offene (radikale) Kettenenden finden. Je mehr Monomere Kettenenden finden und sich verbinden, desto geringer wird der Restmonomergehalt!
Die Wärme des Wassers im Drucktopf bewirkt aber im Laufe der Polymerisation eine Beschleunigung der Polymerisation und einen vollständigeren Ablauf. Die Monomermoleküle bleiben im warmen Wasser beweglicher (mehr Bewegungsenergie) und können so besser zufällig offene (radikale) Kettenenden finden. Je mehr Monomere Kettenenden finden und sich verbinden, desto geringer wird der Restmonomergehalt!


Allerdings muss bei der kurzen Polymerisationszeit der recht hohe '''Restmonomergehalt''' kurz nach der Polymerisation beachtet werden. Der '''Restmonomergehalt''' (zu Beginn ca. 4%) '''sinkt erst nach ungefähr 3 Tagen''' auf gesundheitlich akzeptable Werte von ca. 2% (z.B. Paladur Reparaturkunststoff) oder unter 1% (z.B. Palapress Prothesenkunststoff)<ref>Rieder; Nichtmetalle; Verlag Neuer Merkur; 2018; S.264</ref>!


====Schrumpfung des Kunststoffes====
====Schrumpfung des Kunststoffes====


===Das Gießverfahren===
[[File:1280px-Perlpolymer_MB189.jpg|thumb|Perlpolymerisat]]'''Monomer''' allein '''schrumpft''' bei der Polymerisation um ca. '''20-30%'''!. Das würde eine unkontrollierbare Volumenänderung bei der Polymersiation bedeuten. Damit die Schrumpfung bei der Reparatur '''nicht so hoch ausfällt''', wird mit dem Polymer schon '''fertig polymerisierter Kunststoff''' hinzugefügt. Der schrumpft natürlich nicht mehr. So kann die Gesamtschrumpfung auf ca. 4% reduziert werden.


Hierbei werden meistens flüssige Autopolymerisate wie in unserem Beispiel in einen Vorwall gegossen und unter Druck bei 40°C bis 55°C im Wasserbad polymerisiert. Es gibt auch Gießküvetten mit spezieller Dubliermasse. Nach dem Anrühren ist der Kunststoff etwa 3 Minuten lang gießfähig und geht danach in die plastische Phase über. Nach spätestens etwa 10 Minuten (bitte Verarbeitungsanleitung des jeweiligen Kunststoffes beachten!) soll sich die Arbeit im Drucktopf befinden.
Das funktioniert natürlich nur, wenn auch das '''Mischungsverhältnis''' zwischen Monomer und Polymer '''optimal''' ist. Die Herstellerangaben sind diesbezüglich optimiert. Gibt man '''mehr Monomer''' als geplant hinzu, '''schrumpft der Kunststoff mehr''' als notwendig. Gibt man '''weniger hinzu''', entstehen oder bleiben bei der Polymerisation '''kleine Löcher''' ([https://de.wikipedia.org/wiki/Lunker#Erweiterter_Lunkerbegriff Lunker]) zwischen Kugeln des Polymers.
 
Das Polymer ist sogenanntes '''Perlpolymerisat'''. Die verschiedenen Kugelgrößen ermöglichen eine Anordnung mit möglichst kleinen Zwischenräumen. So kommt man mit relativ wenig Monomer aus, was eine recht geringe Schrumpfung ermöglicht.
 
====Mischungsverhältnis Pulver/Flüssigkeit====
 
Ein Mitarbeiter Deines Labors berichtet Dir folgende Begebenheit:
 
"Ich habe den Modellguss mit drei Sätteln wie immer mit Autopolymerisat fertiggestellt. Als ich die Prothese aus dem Drucktopf holte, waren die Sättel voller kleiner Bläschen! Die Polymerisationszeit im Drucktopf wurde eingehalten, auch die Wassertemperatur war nach Herstellerangeben eingestellt. ich musste alle Sättel wegfräsen, so ein Mist!"
 
Du selbst hast direkt danach im selben Drucktopf erfolgreich eine Bruchreparatur polymerisiert.
 
 
Folgende Hinweise könnten Dir helfen, deinen Kollegen zu beraten:
 
*Dein Kollege könnte zu viel Monomer verwendet haben, damit der Kunststoff für drei Sättel besser fließt. Das viele Momomer erzeugt recht früh, bevor die Prothese in den Drucktopf kam, mehr Wärme beim Polymerisieren, daher die Bläschen.
*Es könnte sein, dass die Prothese bei zu langer Verarbeitung zu spät in den Drucktopf kam. Drei Sättel brauchen halt Zeit. Die Polymerisation war dann schon vor dem Drucktopf ohne Kühlung durch Wassser im Gange.
*Der Kunststoff könnte dickflüssiger angemischt werden. Die drei Sättel könnten dann nacheinander fertiggestellt und dann jeweils polymerisiert werden. Die Prothese könnte dafür mit kleinen Schraubzwingen auf dem Modell fixiert werden.
*Der Kunststoff könnte in Kunststoffspritzen gefüllt und durch ein Loch in einem kompletten Silikonwall in den Sattel gespritzt werden. So kann auch dickflüssigerer Kunststoff sicher verarbeitet werden.
*Manche Fachleute sagen, man kann weniger Monomer als in der Verarbeitungsaleitung angegeben verwenden. Mit einer Spritze verarbeitet wird so auch die Polymerisationschrumpfung immer geringer und der Restmonomergehalt sinkt!
 
<div {{Arbeitsblatt}}>
 
Folgende Aufträge könntest Du je nach Zeit und Möglichkeit nun durchführen:
 
*'''Berate''' Deinen Kollegen mündlich zu seinem Problem. Nimm Deine Beratung als Audio auf!
*'''Führe''' Versuche zur Auswirkung verschiedener Drücke im Drucktopf '''durch''' und '''analysiere''' die Ergebnisse.
*'''Führe''' Versuche zur Applikation des Kunststoffes mit Einmalspritzen durch und '''beschreibe''' die Vorgehensweise.


Einsatz findet die Methode nicht nur bei Reparaturen, sondern auch bei der Herstellung '''und''' Komplettierung von temporären partiellen Prothesen. Das Verfahren ist vor allem zeitsparend und kostengünstig wegen des geringen apparativen Aufwand und somit bei Reparaturen beliebt. Allerdings muss bei der kurzen Polymerisationszeit der recht hohe '''Restmonomergehalt''' kurz nach der Polymerisation beachtet werden. Der '''Restmonomergehalt''' (zu Beginn ca. 4%) '''sinkt erst nach ungefähr 3 Tagen''' auf gesundheitlich akzeptable Werte von ca. 2% (z.B. Paladur Reparaturkunststoff) oder unter 1% (z.B. Palapress Prothesenkunststoff)<ref>Rieder; Nichtmetalle; Verlag Neuer Merkur; 2018; S.264</ref>!
</div>





Aktuelle Version vom 22. Mai 2024, 07:56 Uhr


Du hast während Deiner bisherigen Ausbildung sicherlich schon mit Autopolymerisat eine Prothese repariert oder unterfüttert. Du kennst die Arbeitsschritte und verwendest den Drucktopf zum Aushärten (Polymerisation). Hast Du die Verarbeitungsanleitung für das Autopolymerisat schon mal gelesen ;-)?

Die Polymerisation von Methylmethacrylat sollte dir grundsätzlich in Bezug auf Auto- und Photopolymerisat aus der Lernsituation 2.1 bekannt sein.


Wiederholung Polymerisation

Überprüfe nun zunächst Dein Wissen aus der Lernsituation 2.1 mit den beiden folgenden Übungen:

Als Lernende des ADBK Düsseldorf führst Du die Übungen bitte in Deinem Lernmanagementsystem (LMS) aus! Nur dort erhältst Du auch eine Bewertung für die Übung.




Arbeitsschritte zur Reparatur[1][2]

Die Reparatur einer Prothese führst Du normalerweise in diesen Schritten durch:

  • Du hast einen Vorwall angefertigt.
  • Du hast das Arbeitsmodell für die Reparatur gewässert und isoliert.
  • Du rauhst die Bruchstelle der Prothese großzügig an, fixierst sie am Modell und benetzt die angerauhten Stellen mit Monomer.
  • Du rührst den Kunststoff aus Momoner und Polymer nach Herstellerangaben an.
  • Du trägst den angerührten Kunststoff großzügig auf oder lässt ihn bei größeren Defekten einlaufen.
  • Du stellst die Prothese bzw. das Modell mit der Prothese zur Polymerisation nach Herstellerangaben in den Drucktopf.

Im Klassenraum bzw. im Lernmanagementsystem (LMS) liegen Verarbeitungsanleitungen für Autopolymerisat eines oder mehrerer Kunststoffhersteller bereit.

Vergleiche den oben beschriebenen Ablauf mit den Vorgaben der Hersteller und notiere bei Bedarf mit Hilfe deiner Lehrkraft Besonderheiten der Verarbeitungsanleitung.



Vorbereitung des Modells und der Bruchstelle

Isolieren des Modells

Isolieren bedeutet per Definition, etwas durch eine undurchlässige Schicht schützen.

Eine Gipsisolierung besteht aus Alginat-Isoliermittel (Natrium-Alginat). Dieses wird auf die Gipsoberfläche gestrichen und es findet ein Ionen-Austausch zwischen der Na-Ionen des Isoliermittels und den Ca-Ionen der Gipsoberfläche statt. Durch diese Reaktion geliert das Alginat. Es entsteht ein hauchdünner Film auf der Oberfläche des Modells.

Würde man den angemischten Kunststoffteig auf eine trockene Gipsoberfläche aufbringen, so würde sich Monomer in den porösen Gips einsaugen. Der Kunststoff wäre dann untrennbar mit dem Gips verbunden. Würde man beide Teile unter Gewalt trennen, wäre die Kunststoffoberfläche rauh und porös. Der Gips muss daher zum einen feucht sein. Zum anderen muss eine dünne Alginatschicht auf das Modell aufgetragen werden.

Isoliermittel-Pfützen reagieren nicht mehr mit den Ca-Ionen der Gipsoberfläche und führen zu Ungenauigkeiten in der fertigen Arbeit.

Anrauen des Kunststoffes

Durch das Anrauhen der Bruchstellen vergrößerst Du die Oberfläche dieser Bereiche. Daher ist es wichtig, die Bruchstücke anschließend mit flüssigem Monomer zu benetzen. Das Monomer dringt in den bereits polymerisierten Kunststoff der Prothese ein. Durch das Vergrößern der Oberfläche dringt mehr Monomer in die Prothese ein und liegt dann zwischen den vorhandenen Ketten.



Verarbeitung des Kunststoffs

Anquellprozess

Nachdem Du den Kunststoff angerührt hast, beginnt im Kunststoff der Anquellprozess. Die Monomere dringen wie bei der Prothese in die Oberfläche der Polymerkugeln (Perlpolymerisat) ein.

Das Gießverfahren

Hierbei werden meistens flüssige Autopolymerisate wie in unserem Beispiel in einen Vorwall gegossen und unter Druck bei 40°C bis 55°C im Wasserbad polymerisiert. Es gibt auch Gießküvetten mit spezieller Dubliermasse. Nach dem Anrühren ist der Kunststoff etwa 3 Minuten lang gießfähig und geht danach in die plastische Phase über. Nach spätestens etwa 10 Minuten (bitte Verarbeitungsanleitung des jeweiligen Kunststoffes beachten!) soll sich die Arbeit im Drucktopf befinden.

Einsatz findet die Methode nicht nur bei Reparaturen, sondern auch bei der Herstellung und Komplettierung von temporären partiellen Prothesen. Das Verfahren ist vor allem zeitsparend und kostengünstig wegen des geringen apparativen Aufwand und somit bei Reparaturen beliebt.


Die Polymerisation im Drucktopf [3][4]

Polymerisation

Während er Polymerisation bilden die Momomere Ketten. Wie das abläuft, weißt Du bereits (siehe Übung oben). Die Monomere, die sowohl in die Polymerkugeln als auch in die alte Prothese beim Anquellen eingedrungen sind, werden nun in die Ketten eingebaut. Da sie zwischen den alten Ketten liegen, umschlingen die neuen Ketten die alten. So entsteht ein stabiles Netzwerk aus alten und neuen Polymerketten.

Es entsteht keine neue chemische Verbindung von alten und neuen Ketten zu einer neuen. Die entstehende Verbindung ist eine rein physikalische Verbindung, da die Ketten sich nur gegenseitig wie oben beschrieben umschlingen. Man nennt solche Verbindungen interpenetrierende Netzwerke.

Wärmeentwicklung

Bei der Polymersation von MMA wird ein erhebliche Wärme freigesetzt. Die sich im Kunststoffteig bewegenden Monomermoleküle verlieren beim Andocken an ein Kettenende ihre Bewegungsenergie. Diese wandelt sich in Wärmeenergie um und werd frei. Die Polymerisation ist daher eine exotherme Reaktion.

Diese Wärme muss einerseits so abgeführt werden, dass der Kunststoffteig nicht über 100,3°C warm wird. Bei dieser Temperatur würde das Monomer im Kunststoffteig sieden (kochen) und weiße sichtbare Bläschen im Kunststoff bilden. Das verschlechtert die Festigkeit und die Ästhetik. Das passiert besonders an dicken Stellen der Prothesen, an denen die Wärme schlecht abgeführt werden kann!

Daher erfolgt die Polymerisation im Drucktopf bei 45 - 55°C warmem Wasser. Obwohl das Wasser warm ist, ist es gegenüber der frei werdenden Wärme der exothermen Reaktion immer noch kalt. Es kühlt als die Prothese und verhindert so das Sieden des Momomers und so das Entstehen von Siedebläschen während der Hauptphase der Polymerisation.

Der Druck von 2 bar im Drucktopf sorgt zusätzlich dafür, dass Siedebläschen verhindert werden. Die Siedetemperatur erhöht sich unter 2 bar Druck bei Monomer auf 130-140°C. Mit steigendem Druck erhöht sich demnach der Siedepunkt. Du darfst den Drucktopf während des Polymerisationsvorgangs daher nie öffnen.

Schon gerinfügig geringerer Druck kann dafür sorgen, dass das Monomer bei der Polymerisation im Drucktopf siedet!

Wasseraufnahme des Monomers

Die Beschleunigung der Polymerisation gegenüber Raumtemperatur verhindert, der noch nicht polymerisierte Teil des Kunststoffteiges Wasser aufnimmt. Dies würde zu einer Weißverfärbung an der Oberfläche des Kunststoffes führen. Monomer kann auf Dauer bis zu ca. 1% Wasser aufnehmen.

Restmonomergehalt

Die Wärme des Wassers im Drucktopf bewirkt aber im Laufe der Polymerisation eine Beschleunigung der Polymerisation und einen vollständigeren Ablauf. Die Monomermoleküle bleiben im warmen Wasser beweglicher (mehr Bewegungsenergie) und können so besser zufällig offene (radikale) Kettenenden finden. Je mehr Monomere Kettenenden finden und sich verbinden, desto geringer wird der Restmonomergehalt!

Allerdings muss bei der kurzen Polymerisationszeit der recht hohe Restmonomergehalt kurz nach der Polymerisation beachtet werden. Der Restmonomergehalt (zu Beginn ca. 4%) sinkt erst nach ungefähr 3 Tagen auf gesundheitlich akzeptable Werte von ca. 2% (z.B. Paladur Reparaturkunststoff) oder unter 1% (z.B. Palapress Prothesenkunststoff)[5]!

Schrumpfung des Kunststoffes

Perlpolymerisat

Monomer allein schrumpft bei der Polymerisation um ca. 20-30%!. Das würde eine unkontrollierbare Volumenänderung bei der Polymersiation bedeuten. Damit die Schrumpfung bei der Reparatur nicht so hoch ausfällt, wird mit dem Polymer schon fertig polymerisierter Kunststoff hinzugefügt. Der schrumpft natürlich nicht mehr. So kann die Gesamtschrumpfung auf ca. 4% reduziert werden.

Das funktioniert natürlich nur, wenn auch das Mischungsverhältnis zwischen Monomer und Polymer optimal ist. Die Herstellerangaben sind diesbezüglich optimiert. Gibt man mehr Monomer als geplant hinzu, schrumpft der Kunststoff mehr als notwendig. Gibt man weniger hinzu, entstehen oder bleiben bei der Polymerisation kleine Löcher (Lunker) zwischen Kugeln des Polymers.

Das Polymer ist sogenanntes Perlpolymerisat. Die verschiedenen Kugelgrößen ermöglichen eine Anordnung mit möglichst kleinen Zwischenräumen. So kommt man mit relativ wenig Monomer aus, was eine recht geringe Schrumpfung ermöglicht.

Mischungsverhältnis Pulver/Flüssigkeit

Ein Mitarbeiter Deines Labors berichtet Dir folgende Begebenheit:

"Ich habe den Modellguss mit drei Sätteln wie immer mit Autopolymerisat fertiggestellt. Als ich die Prothese aus dem Drucktopf holte, waren die Sättel voller kleiner Bläschen! Die Polymerisationszeit im Drucktopf wurde eingehalten, auch die Wassertemperatur war nach Herstellerangeben eingestellt. ich musste alle Sättel wegfräsen, so ein Mist!"

Du selbst hast direkt danach im selben Drucktopf erfolgreich eine Bruchreparatur polymerisiert.


Folgende Hinweise könnten Dir helfen, deinen Kollegen zu beraten:

  • Dein Kollege könnte zu viel Monomer verwendet haben, damit der Kunststoff für drei Sättel besser fließt. Das viele Momomer erzeugt recht früh, bevor die Prothese in den Drucktopf kam, mehr Wärme beim Polymerisieren, daher die Bläschen.
  • Es könnte sein, dass die Prothese bei zu langer Verarbeitung zu spät in den Drucktopf kam. Drei Sättel brauchen halt Zeit. Die Polymerisation war dann schon vor dem Drucktopf ohne Kühlung durch Wassser im Gange.
  • Der Kunststoff könnte dickflüssiger angemischt werden. Die drei Sättel könnten dann nacheinander fertiggestellt und dann jeweils polymerisiert werden. Die Prothese könnte dafür mit kleinen Schraubzwingen auf dem Modell fixiert werden.
  • Der Kunststoff könnte in Kunststoffspritzen gefüllt und durch ein Loch in einem kompletten Silikonwall in den Sattel gespritzt werden. So kann auch dickflüssigerer Kunststoff sicher verarbeitet werden.
  • Manche Fachleute sagen, man kann weniger Monomer als in der Verarbeitungsaleitung angegeben verwenden. Mit einer Spritze verarbeitet wird so auch die Polymerisationschrumpfung immer geringer und der Restmonomergehalt sinkt!

Folgende Aufträge könntest Du je nach Zeit und Möglichkeit nun durchführen:

  • Berate Deinen Kollegen mündlich zu seinem Problem. Nimm Deine Beratung als Audio auf!
  • Führe Versuche zur Auswirkung verschiedener Drücke im Drucktopf durch und analysiere die Ergebnisse.
  • Führe Versuche zur Applikation des Kunststoffes mit Einmalspritzen durch und beschreibe die Vorgehensweise.



  1. Eichner/Kappert; Zahnärztliche Werkstoffe und ihre Verarbeitung, Hüthing Verlag Heidelberg; 1996; S.202ff
  2. Rieder; Nichtmetalle; Verlag Neuer Merkur; 2018; S.246f
  3. Eichner/Kappert; Zahnärztliche Werkstoffe und ihre Verarbeitung, Hüthing Verlag Heidelberg; 1996; S.217ff
  4. Rieder; Nichtmetalle; Verlag Neuer Merkur; 2018; S.246f
  5. Rieder; Nichtmetalle; Verlag Neuer Merkur; 2018; S.264