WAK vereinfacht: Unterschied zwischen den Versionen
Neh (Diskussion | Beiträge) |
Neh (Diskussion | Beiträge) |
||
Zeile 4: | Zeile 4: | ||
[[File:Kelvin_Grad_Celsius.png|thumb|right|100px| Kelvin und Grad Celsius]] | [[File:Kelvin_Grad_Celsius.png|thumb|right|100px| Kelvin und Grad Celsius]] | ||
Der '''W'''ärme'''a'''usdehnungs'''k'''oeffizent (abgekürzt WAK) ist ein Materialwert, der angibt, wie stark sich ein Material bei einer Temperaturänderung vergrößert (ausdehnt/expandiert) oder verkleinert (zusammenzieht/kontrahiert). | Der '''W'''ärme'''a'''usdehnungs'''k'''oeffizent (abgekürzt WAK) ist ein Materialwert, der angibt, wie stark sich ein Material bei einer Temperaturänderung vergrößert (ausdehnt/expandiert) oder verkleinert (zusammenzieht/kontrahiert). | ||
Der WAK wird in der Einheiten 1/K (1/Kelvin) angegeben. Kelvin (K) ist eine Einheit zum Messen von Temperaturen so wie Grad Celsius (°C). Eine Temperaturänderung von 1 K ist das selbe wie eine Temperaturänderung von 1°C. | Der WAK wird in der Einheiten 1/K (1/Kelvin) angegeben. Kelvin (K) ist eine Einheit zum Messen von Temperaturen so wie Grad Celsius (°C). Eine Temperaturänderung von 1 K ist das selbe, wie eine Temperaturänderung von 1°C. | ||
== Linearer Wärmeausdehnungskoeffizient== | == Linearer Wärmeausdehnungskoeffizient== | ||
[[File:Längenausdehnungskoeffizient.png|thumb|right|200px| Längenausdehnungskoeffizient ''α ''bzw. Linearer Wärmeausdehnungskoeffizient ''α'']] | [[File:Längenausdehnungskoeffizient.png|thumb|right|200px| Längenausdehnungskoeffizient ''α ''bzw. Linearer Wärmeausdehnungskoeffizient ''α'']] |
Version vom 4. März 2023, 22:14 Uhr
Wärmeausdehnungskoeffizient
Der Wärmeausdehnungskoeffizent (abgekürzt WAK) ist ein Materialwert, der angibt, wie stark sich ein Material bei einer Temperaturänderung vergrößert (ausdehnt/expandiert) oder verkleinert (zusammenzieht/kontrahiert). Der WAK wird in der Einheiten 1/K (1/Kelvin) angegeben. Kelvin (K) ist eine Einheit zum Messen von Temperaturen so wie Grad Celsius (°C). Eine Temperaturänderung von 1 K ist das selbe, wie eine Temperaturänderung von 1°C.
Linearer Wärmeausdehnungskoeffizient
Feste Körper wie Kronen und Brücken vergrößern sich bei Erwärmung. Um Anzugeben wie stark sich die Festkörper ausdehnen oder zusammenziehen wird der linearer Wärmeausdehnungskoeffizient α genutzt. Der linearer Wärmeausdehnungskoeffizient α beschreibt, wie stark sich diese Festkörper bei einer Temperaturänderung um 1 Kelvin (oder 1°C) vergrößern (ausdehnen/expandieren) bzw. verkleinern (zusammenziehen/kontrahieren).
Bedeutung des WAK in der Zahntechnik
Der WAK von Dentallegierungen ist in Legierungstabellen von großer Bedeutung. Deutlich wird dies bei einem Keramikbrand auf eine Aufbrennlegierung. Dabei können 3 Fälle auftreten:
1. Der WAK der Legierung ist gleich dem WAK der Keramik. WAK_Legierung = WAK_Keramik.
2. Der WAK der Legierung ist größer als der WAK der Keramik. WAK_Legierung > WAK_Keramik
3. Der WAK der Legierung ist kleiner als der WAK der Keramik. WAK_Legierung < WAK_Keramik
1. Der WAK der Legierung ist gleich dem WAK der Keramik.
Beide Stoffe dehnen sich bei Erwärmung gleich aus und ziehen sich bei der Ablühlung wieder zusammen. Hört sich zunächst gut an, ist aber leider kaum zu erreichen, da man nie absolut gleiche WAK-Werte bei zwei Stoffen erreichen kann. Die Gefahr ist sehr groß, dass bei kleinen Abweichungen in der Legierung oder der Keramik der WAK der Keramik größer ist, was sehr schlecht für die Keramik ist. Warum wird in Fall 3 besprochen. (siehe WAK_Legierung<WAK_Keramik).
2. Der WAK der Legierung ist größer als der WAK der Keramik.
Im Aufwärmvorgang dehnt sich die Legierung stärker aus als die Keramik. Im Abkühlungsvorgang zieht sich die Legierung stärker als die Keramik der Verblendung zusammen. Da die Keramik an der Legierungsoberfläche gebunden ist, wird die Keramik gezwungen etwas kleiner zu werden als sie normalerweise würde (Normal wäre der die obere Kante der Keramik, die nicht an der Legierung haftet). Die Keramik wird also im Bereich zwischen Keramik und Metall zusammen gedrückt. Spröde Werkstoffe wie Keramiken können dieses zusammen drücken sehr gut aushalten. Es ist demnach kein Problem.
3. Der WAK der Legierung ist kleiner als der WAK der Keramik.
Im Aufwärmvorgang dehnt sich die Keramik stärker als die Legierung. Im Abkühlungsvorgang zieht sich die Keramik auch stärker zusammen als die Legierung. Die Keramik ist mit dem Legierungsgerüst verbunden. Daher wird die Keramik von dem Legierungsgerüst gezwungen etwas größer zu bleiben als sie normalerweise würde (normalerweise würde sich die Keramik überall wie die obere Kante der Keramik zusammenziehen). Die Keramik wird also im Bereich zwischen Keramik und Metall auseinander gezogen. Dies führt zu Zugspannung (wird auseinander gezogen), welches für einen spröden Werkstoff wie Keramik die Rissbildung stark erhöht.
Optimaler Legierungs-WAK und der Grund für Risse und Abplatzungen in der Verblendung
Die Legierung und die Keramik müssen demnach aufeinander abgestimmt sein. Optimale Bedingungen sind gegeben, wenn die Legierung einen um 0,5 bis 1 1/K größeren WAK-Wert hat als die Keramik. So wird die Legierung bei der Abkühlung stärker konrahieren und die Keramik (die an der Legierung haftet) wird leicht zusammengedrückt (siehe Fall 2: WAK_Legierung > WAK_Keramik).
Ist der WAK der Legierung viel größer als der WAK der Keramik führt dies zu Abplatzungen, da die Keramik gezwungen wird, stark zu schrumpfen und somit die Druckspannung (Keramik wird zusammengedrückt) sehr hoch wird. Ist der WAK der Legierung viel kleiner als der WAK der Keramik, führt dies zu Rissen, da die Keramik gezwungen wird, sich stark auszudehnen und somit die Zugspannung (Keramik wird auseinander gezogen) sehr hoch wird.